

Sampling

CS 148: Summer 2016 Introduction of Graphics and Imaging Zahid Hossain

More Jaggies

Small image

Large texture

Magnification/Minification

Moiré Patterns

Storage, Sensor, Display are Discrete

Reconstruct from samples

May work well with lots of samples

Tradeoffs

- Higher sampling rate
 - Large storage space
- Get away with lower order reconstruction

- Lower sampling rate
 - Smaller storage space
- Requires higher order reconstruction
 - Expensive computation

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_o x) + \sum_{n=1}^{\infty} b_n \sin(n\omega_o x)$$

Fourier Series: More Examples

Fourier Series: More Examples

Fourier Series: More Examples

- Treat functions as vectors !
- Define a inner product (dot product)

Inner Product :
$$\langle g, h \rangle \stackrel{def}{\equiv} \int_{x} g(x) \overline{h(x)} dx$$

- Treat functions as vectors !
- Define a inner product (dot product)
- Different frequencies of Cos and Sin happens to be orthogonal to each other

$$\langle \sin(n\omega_0 x), \sin(m\omega_0 x) \rangle = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \sin(n\omega_0 x) \sin(m\omega_0 x) dx$$
$$= \begin{cases} \frac{1}{2}T_0 & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$$

- Treat functions as vectors !
- Define a inner product (dot product)
- Different frequencies of Cos and Sin happens to be orthogonal to each other

$$\langle \sin(n\omega_0 x), \sin(m\omega_0 x) \rangle = \begin{cases} \frac{1}{2}T_0 & \text{if } m = n\\ 0 & \text{otherwise} \end{cases} \\ \langle \cos(n\omega_0 x), \cos(m\omega_0 x) \rangle = \begin{cases} \frac{1}{2}T_0 & \text{if } m = n\\ 0 & \text{otherwise} \end{cases} \\ \langle \sin(n\omega_0 x), \cos(m\omega_0 x) \rangle = 0 \end{cases}$$

Orthogonal set : $\{1, \sin(n\omega_0 x), \cos(m\omega_0 x)\}$

 \mathbf{T}

$$a_0 = 2 \frac{\langle g(x), 1 \rangle}{\langle 1, 1 \rangle} = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) dx$$

$$a_n = \frac{\langle g(x), \cos(n\omega_0 x) \rangle}{\langle \cos(n\omega_0 x), \cos(n\omega_0 x) \rangle} = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) \cos(n\omega_0 x) dx$$

$$b_n = \frac{\langle g(x), \sin(n\omega_0 x) \rangle}{\langle \sin(n\omega_0 x), \sin(n\omega_0 x) \rangle} = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) \sin(n\omega_0 x) dx$$

$$g(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_o x) + \sum_{n=1}^{\infty} b_n \sin(n\omega_o x)$$

Fourier Series: Compact Form

Fourier Series: Compact Form

$$g(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_o x) + \sum_{n=1}^{\infty} b_n \sin(n\omega_o x)$$

$$Compact Form \qquad e^{in\omega_0 x} = \cos(n\omega_0 x) + i\sin(in\omega_0 x)$$

$$g(x) = \sum_{n=-\infty}^{\infty} A_n e^{in\omega_0 x}$$

Fourier Series: Compact Form

Orthogonal set :
$$\{e^{in\omega_0 x}\}$$

$$\left\langle e^{in\omega_0 x}, e^{im\omega_0 x} \right\rangle = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{in\omega_0 x} e^{-im\omega_0 x} dx$$
$$= \begin{cases} T & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$$

Fourier Series: Coefficients

$$A_n = \frac{\left\langle g(x), e^{in\omega_0 x} \right\rangle}{\left\langle e^{in\omega_0 x}, e^{in\omega_0 x} \right\rangle} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) e^{-in\omega_0 x} dx$$

Distribution of Frequencies

Fourier Transform: Continuous

Fourier Transform: Continuous $T_0 \to \infty$ $\lim_{T_0 \to \infty} \omega_0 = \frac{2\pi}{T_0} = 0$

$$A_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) e^{-in\omega_0 x} dx$$

Fourier Transform: Continuous $T_0 \to \infty$ $\lim_{T_0 \to \infty} \omega_0 = \frac{2\pi}{T_0} = 0$

$$A_{n} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} g(x)e^{-in\omega_{0}x}dx$$
$$\implies A_{n} = \frac{\omega_{0}}{2\pi} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} g(x)e^{-i\omega x}dx, \quad \left[\omega = n\omega_{0}, \omega_{0} = \frac{2\pi}{T_{0}}\right]$$

Fourier Transform: Continuous $T_0 \to \infty$ $\lim_{T_0 \to \infty} \omega_0 = \frac{2\pi}{T_0} = 0$

$$A_{n} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} g(x)e^{-in\omega_{0}x}dx$$
$$\implies A_{n} = \frac{\omega_{0}}{2\pi} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} g(x)e^{-i\omega x}dx, \quad \left[\omega = n\omega_{0}, \omega_{0} = \frac{2\pi}{T_{0}}\right]$$

$$\implies \lim_{T_0 \to \infty, \omega_0 \to 0} A_n = \lim_{T_0 \to \infty, \omega_0 \to 0} \frac{\omega_0}{2\pi} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(x) e^{-i\omega x} dx$$

Fourier Transform: Continuous $T_0 \to \infty$ $\lim_{T_0 \to \infty} \omega_0 = \frac{2\pi}{T_0} = 0$ $A_{n} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{-0}{2}} g(x) e^{-in\omega_{0}x} dx$ $\implies A_n = \frac{\omega_0}{2\pi} \int_{-\frac{T_0}{T_0}}^{\frac{T_0}{2}} g(x) e^{-i\omega x} dx, \quad \left[\omega = n\omega_0, \omega_0 = \frac{2\pi}{T_0}\right]$ $\implies \lim_{T_0 \to \infty, \omega_0 \to 0} A_n = \lim_{T_0 \to \infty, \omega_0 \to 0} \frac{\omega_0}{2\pi} \int_{-\frac{T_0}{2}}^{\frac{\tau_0}{2}} g(x) e^{-i\omega x} dx$ $\implies \lim_{T_0 \to \infty, \omega_0 \to 0} A_n = \frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx, \quad [\omega_0 = \Delta \omega]$
$$\lim_{T_0 \to \infty} A_n = \frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx$$
$$g(x) = \sum_{n=-\infty}^{\infty} A_n e^{in\omega_0 x}$$

$$\lim_{T_0 \to \infty} A_n = \frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx$$
$$g(x) = \sum_{n = -\infty}^{\infty} A_n e^{in\omega_0 x}$$
$$g(x) = \sum_{n = -\infty}^{\infty} \left(\frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx\right) e^{i\omega x}, \quad [\omega = n\omega_0]$$

$$\lim_{T_0 \to \infty} A_n = \frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx$$
$$g(x) = \sum_{n=-\infty}^{\infty} A_n e^{in\omega_0 x}$$
$$g(x) = \sum_{n=-\infty}^{\infty} \left(\frac{\Delta \omega}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx\right) e^{i\omega x}, \quad [\omega = n\omega_0]$$
$$= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx\right) e^{i\omega x} \Delta \omega$$

Fourier Transform of the function g(x) $F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx$

Fourier Transform: Operator Form

$$\mathcal{F}[g(x)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx$$

$$\mathcal{F}^{-1}\left[F(\omega)\right] = g(x) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega x}d\omega$$

Fourier Transform: Examples

Fourier Transform Properties

- Fourier transform is a linear operator
 - F[ag(x) + bh(x)] = a F[g(x)] + b F[h(x)]
- Fourier transform scaling property

•
$$f(\lambda x) \Leftrightarrow \frac{1}{|\lambda|} F\left(\frac{\omega}{\lambda}\right)$$

Convolution: Avenue to Continuous

Convolution of a Discrete and a Continuous Function

 $\hat{g}(x) = \sum a_i k(x - i)$ 2

Convolution of a Continuous Functions

$$\hat{g}(x) = \int_{u} f(u)k(x-u)du$$

Convolution Notations

For continuous function

$$f(x) * k(x) = \int_{u} f(u)k(x-u)du$$

For discrete function

$$f[i] * k(x) = \sum_{i} f_i k(x-i) du$$

Convolution Properties

- Convolution is also a linear operator
- Convolution is commutative
 - H * G = G * H
 - i.e. if you have two filters (linear) to be applied one after another, the order doesn't matter

Fourier Transform and Convolution

$$g = f * k$$
$$\implies \mathcal{F}[g] = \mathcal{F}[f] \cdot \mathcal{F}[k]$$
$$G(\omega) = F(\omega) \cdot K(\omega)$$

Convolution turns into simple multiplication in the Fourier/Frequency domain

Spatial Domain

Fourier Transform of Discrete Function

Spatial Domain Frequency Domain Bandwidth Freq

Fourier Transform of Discrete Function

Spatial Domain

Frequency Domain

Poisson Summation

$$\mathcal{F}[f(nT)] = \sum_{k} F\left(f - k\frac{1}{T}\right), \quad \mathcal{F}[f(x)] = F(f), \text{ sampling rate} = \frac{1}{T}$$

Note the use of frequency variable f, instead of w

Sampling Rate

Sampling Rate

Aliasing

Spatial Domain

Frequency Domain

Cannot be reconstructed perfectly ! High frequencies appear as low frequencies.

Aliasing: Moiré Pattern

High frequencies appearing as low frequencies !

Optimal Sampling

Example

- Human voice bandwidth is 4Khz
- Sampling rate must be atleast 8Khz
- Each sample is stored with 8 bits
- Therefore voice encoding requires 64Kbps (PCM)

OpenGL Filtering (Fourier Domain)

Example: Subsampling Textures

<section-header>

Subsampling: Filtering during sub-sampling inherently does anti-aliasing But the filter size needs to much larger

Revisit Mipmapping

- Progressively anti-alias and sub-sample
- Pre-computes all the levels
 - Thus avoids large filter during run-time

FFT: Fast Fourier Transform

- Discrete Fourier Transform
- A very efficient method to compute discrete fourier transform.
- Extremely important algorithm !

Real World Images

Spatial Domain

Low-Pass Filter

Spatial Domain

Frequency Domain

Band-Pass Filter

Spatial Domain

Larger Band-Pass Filter

Spatial Domain

High-Pass Filter (Edges)

Spatial Domain

Sampling

CS 148: Summer 2016 Introduction of Graphics and Imaging Zahid Hossain