OO0

RLLSRLSLSRLLSKL

raphics and Imaging

David Hyde

Particle ellison at LHC. Elementary
Particle Phy?ics describes the
“*groduction and interaction of
ental particles, like neutrinos.

WHAT IS COMPUTATION?

Am':m *

OUTLINE

I Computational Physics
" History

* Today

" Examples

Il Fluid Simulation

* Particle-based simulation
* Grid-based simulation

* Using Tools

* Rendering Considerations

[l Cloth Simulation
= Baraff and Witkin

A BRIEF HISTORY OF COMPUTATIONAL PHYSICS

HOW COMPUTATIONAL PHYSICS IS USED TODAY

Computational astrophysics

| HOW COMPUTATIONAL PHYSICS IS USED TODAY

Protein folding / biology

HOW COMPUTATIONAL PHYSICS IS USED TODAY

Computational fluid dynamics

HOW COMPUTATIONAL PHYSICS IS USED TODAY

Computational fluid dynamics

HOW COMPUTATIONAL PHYSICS IS USED TODAY

Graphics

HOW COMPUTATIONAL PHYSICS IS USED TODAY

Graphics

HOW COMPUTATIONAL PHYSICS IS USED TODAY

A SIMPLE COMPUTATIONAL PHYSICS EXAMPLE

Simulating an object falling due to gravity:

1
x = xo + VoAt + EaAt2

Pick a “time step” At
Solve equation to update x

Use new x and old x to update v

> L b

Repeat steps 2-4

Splash/compphys_demo.html

MAKING COMPUTATIONAL PHYSICS WORK

A

Figure out what physical laws apply to what you want to simulate (reading,
thinking, doing math)

Figure out how to solve those equations on a computer (reading, thinking, math)
Write a computer program that solves the equations (programming)
Debug

Make a finished product
Render results and make cool pictures/animations (programming, art)

Compare to real-world experiments and other people’s work (programming, reading)

Use results to gain insight into universe and to guide future research

MAKING COMPUTATIONAL PHYSICS WORK

1. Figure out what physical laws apply to what you want to simulate (reading,
thinking, doing math)

e.g. Navier-Stokes equations (fluid dynamics):

0u+ Tu = 1\7‘+ 2 +1 V(V-u)+
atuu—ppvu3v u)t+g

| MAKING COMPUTATIONAL PHYSICS WORK

surface
columns

+
. r
&
4

particles
. .

Figure out how to solve those equations on a computer (reading, thinking, math)

2.

MAKING COMPUTATIONAL PHYSICS WORK

3. Write a computer program that solves the equations (programming)

% codel.m

% A very simple Navier-Stokes solver for a drop falling in a rectangular
% domain. The viscosity is taken to be a constant and a forward in time,
% centered in space discretization is used. The density is advected by a
% simple upwind scheme.

%domain size and physical variables

100.0; rhol=1.0; rho2=2.0; m0=0.01; rro=rhol;
0;vwest=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables
nx=32;ny=32;dt=0.00125;nstep=100; maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys

s (nx+1,ny+2) ; v=zeros(nx+2,ny+l); p=zeros(nx+2,ny+2);
(nx+2,ny+1); tmpl (nx+2,ny+2);
s(nx+1l,ny+l); tmp2=: s (nx+2,ny+2) ;

u=zer
ut=zeros (nx+1,ny+2) ;
uu=zeros (nx+1l,ny+l); v

zer

% Set the grid
y=Ly/ny;
for i=1l:nx+2; x(i)=dx*(i-1.5);end; for j=1l:ny+2; y(j)=dy*(j-1.5);end;

% Set density
r=zeros (nx+2,ny+2) +rhol;
for i=2:nx+1,for j=2:ny+l;
if ((x(i)-xc)"2+(y(j)-yc) "2 < rad”2), r(i,j)=rho2;end,

START TIME LOOP======s======m=c=ece—cccccccc—ccocos

for is=l:nstep,is
% tange
u(l:nx+1,1)=2*usouth-u(l:nx+1,2);u(l:nx+1,ny+2)=2*unorth-u(l:nx+1,ny+1);

'tial velocity at boundaries

v(l,1l:ny+l)=2*vwest-v(2,1:ny+1l);v(nx+2,1l:ny+l)=2%*ve

-=v(nx+1,1l:ny+l);

for i=2:nx,for j=2:ny+l % TEMPORARY u-velocity
ut (i,j)=u(i,j)+de*(-0.25* (((u(i+l,j)+u(i,j))"2-(u(i,j)+
u(i=1,3))72) /dx+ ((u(i,3+1)+u (i, §)) * (v (i+1,5)+
v(i,§))-(u(i,3)+u(i,j-1))*(v(i+l,j-1)+v(i,j-1)))/dy)+
m0/ (0.5* (r(i+1,3)+r(i,3)))*(
(u(i+l,j)-2*u(i,j)+u(i-1,3)) /dx"2+
(u(i,j+1)=-2*%u(i,j)+u(i,j-1))/dy”2)+gx) I
end, end

OUTLINE

| Computational Physics
" History
* Today

" Examples

Il Fluid Simulation

= Particle-based simulation

= Grid-based simulation
* Using Tools

* Rendering Considerations

[l Cloth Simulation
= Baraff and Witkin

PARTICLE-BASED FLUID SIMULATION

https://www.youtube.com/watch?v=DhNt_A3k4B4

WALKTHROUGH: PARTICLE-BASED FLUID SIM

Why approximate fluid as particles?
= Simplicity, speed

What must a particle know?

" Position, velocity, mass, density, pressure, force, etc.

How do particles move?

= Newton’s second law (F = ma)

What next?e

* Write the simulation loop!

WALKTHROUGH: PARTICLE-BASED FLUID SIM

The algorithm:
* Initialize particles

* For each time step At:

* For each particle p;:
" Get neighbors N; of p;
" Compute density at p; from N;
" Compute pressure at p; from N;
* Use density, pressure, and other forces like gravity to compute acceleration of p;
* Update particle velocity and position due to acceleration
= Correct for collisions

* Add new particles if necessary (source term)

* Remove particles if necessary (e.g. outside domain)

WALKTHROUGH: PARTICLE-BASED FLUID SIM

* Smaller = more accurate, larger = faster

Q&A:
* Initialize particles * Naively compute inter-particle distances?
2
* For each time step At: How to choose At? 1 =
P * Use a kernel, e.g. W(d) = —5—en??
* For each particle p;: / 2 h3
" Get neighbors N; of p; How to get neighbors? * Acceleration structures?

" Compute density at p; from N;
" Compute pressure at p; from N;
* Use density, pressure, and other forces like gravity to compute acceleration of p;
= Update particle velocity and position due to acceleration How to update?
= Correct for collisions \
= Add new particles if necessary (e.g. source terms) * Forward Euler?
* Remove particles if necessary (e.g. outside domain) * Backward Euler?

* RK4?

ACCELERATION STRUCTURES FOR SPH SIMS

One possible acceleration structure: spatial grid

Extension: adaptive grids

* Quadtrees, octrees

e N -

- \
~ N\

——r ——r ——cor = —v =

TIME INTEGRATION / 205A FREE PREVIEW

How to numerically solve an equation like F = ma? (Assume mass is constant.)

Can express above as ordinary differential equation (ODE):

dv

—=Fm™!
dt
vty ~1 +1 ~1
Forward Euler: — = F'm ™ = v"" = v 4+ AtF'm
* Trivial to solve; unstable
pt -y +1,,-1 +1 +1,,-1
Backward Euler: — = F'oim™ = " = v + AtF"'m

* Requires inversion /iteration to solve; stable
phtl_pyn

Trapezoidal: ——— = %(F" + Fthym™1 = pntl = pn 4

More?: Higher-order methods efc.

At

? (Fn + Fn+1)m—1

RENDERING SPH FLUID

Real fluid is not made of particles

Can’t simulate infinite number of small particles

Radius of Influence per Particle Implicit Surface Final Fluid
Unstructured ("Blobbies") Generated Surface
Point Cloud Q
© 90 ° °
0,°© © » o ‘
o ©® ©

Demo Video

https://www.youtube.com/watch?v=7Z6Lpv3ltaE

RENDERING SPH FLUID

Make it look more realistic?
Lighting, shading
Reflection, refraction

Foam, turbulence
* Color by vorticity:

https://youtu.be/ureGelZPi3o?t=94

WALKTHROUGH: GRID-BASED FLUID SIM

http://physbam.stanford.edu/~fedkiw/animations/glass00.avi

WALKTHROUGH: GRID-BASED FLUID SIM

The idea:
Discretize space into a grid

Store fluid quantities at different positions on the grid
* MAC grid
* Order of accuracy

- 0(Ax),0(Ax?), ete.

* Update fluid quantities with advection and projection steps

91‘1 p ij-1 P i+1,j-1
o ®
UV;;,'-:/Z
p ij uxi’ri /2.
p) @ Uxyp, ® o p:‘+1,;'
Uyr',;'u,’z
p... p.. pP...
-1,j+1 i,j+1 j+1,j+1
[() [

WALKTHROUGH: GRID-BASED FLUID SIM

Choosing a time step R Py Pus
ot Uy,
CFL condition: py
Ah
o p;- Ux“ 12
AT — P @ Us....; ® ‘ o P
Umax '
Uyr',;'u,’z
i 2
(constants out in front?) P » P
o ¢ o
(adaptive time steps?)

WALKTRHOUGH: GRID-BASED FLUID SIM

Semi-Lagrangian advection for a fluid quantity Q (e.g. density)
1. For each grid cell with index 2, 7, £

__oQ
Calculate >

Calcluate the spatial position of (); ; 1, store it in X

Set the gridpoint for Q™ that is nearest to)?p.,ﬂ, equal

o Q;_-,;L

2. SetQ =Q" !
(note: Forward Euler)

WALKTRHOUGH: GRID-BASED FLUID SIM

Projection and collision handling:

Sn+1
V- -d"" =0

-n+1 - — A
u T N = Usolid * M

RENDERING EULERIAN FLUID

Level set method

Initialize level set as signed distance function
* Solve Eikonal equation |[V¢| = 1

Advect level set along with fluid!
.90 _
2 = p|vg|

Reinitialize level set occasionally

Demo Video 1

Demo Video 2

http://physbam.stanford.edu/~fedkiw/animations/source_over_sphere.mp4
http://physbam.stanford.edu/~fedkiw/animations/two_sources.mp4

FLUID SIMULATIONS: BRIEF COMPARISON

_ Particle-Based Grid-Based

Speed? Faster Slower
Parallelization? Trivial Non-trivial
Accuracy? Less accurate More accurate

Visual appearance? Worse Better

FLUID SIMS: RENDERING CONSIDERATIONS

With fluid as triangle mesh, can apply normal mapping

FLUID SIMS: PERFORMANCE CONSIDERATIONS

V-CYCLE
: e SR SMOOTHER
Parallelism T T A
. Y .
GPU? SMOOTHER &3 \;59\ SMOOTHER
& RESIDUAL N S0
= MPI? CJ‘% &Qg‘,‘-‘
* OpenMP?
DIRECT SOLVE
MPL_ COMM_WORLD CLUSTER
node01
() ~|cPuo
s I/ + Process ID (rank): _|CPU 1
{ /—$ node02
#pragma omp parallel OMP_NUM_THREADS
{ % CPU O
cout << "Hello World ["'; 4—P @ @ @ :ﬁt;:;;:d
} \‘ \¢ / node03
}
? CPUO
@ nodeQ4
CPU O

LIVE DEMO: FLUID SIMULATION IN MAYA

(Show rendered result afterwards)

OUTLINE

| Computational Physics
" History
* Today

" Examples

Il Fluid Simulation

* Particle-based simulation
* Grid-based simulation

* Using Tools

* Rendering Considerations

Ill Cloth Simulation
= Baraff and Witkin

SIMULATING CLOTH

SIGGRAPH 98, Orlando, July 19-24 CoMPUTER GRAPHICS Proceedings, Annual Conference Series, 1998

Large Steps in Cloth Simulation
David Baratff = Andrew Witkin

Robotics Institute
Carnegie Mellon University

A SINGLE MASS-SPRING SYSTEM

https://www.math.ksu.edu/~albin/apps/mass_spring.html

COUPLED MASS-SPRING SYSTEM

T L2
k : k : k
o om © m
2y =D z3= D

~w* % cos(@t - ¢) = (22 & + wl) cos(w? -),

—w* % cos(wt — @) = (w(;" % -2w, 522) cos(wt — @),

COUPLED MASS-SPRING SYSTEM

SIMULATING CLOTH

How to model a piece of cloth?

Set of nodes/vertices connected by springs (Hooke’s Law: F = kx)

Aj

*———9+ = -P”
—ay——y L
; — ({1
— ¢ &
4 X —e L L
[T]]]

SIMULATING CLOTH

How to model a piece of cloth?
Apply various forces to cloth/springs

Restorative forces to prevent cloth craziness

Stretch Shear

I

Bending

CA

3]
!

T

[}
!

SIMULATING CLOTH

The math
Governing ODE:

=M1 (—a—E+F)

where M is mass distribution of cloth, E is cloth’s internal energy, and F captures
forces like air drag, contact, bending, internal damping, etc.

“Energy” idea: for a (vector) condition C we want to be zero, associate with it an
energy function

Ec(x) = kC()TC(x)

(looks like kinetic energy)

SIMULATING CLOTH

Condition C(x) used for the stretch energy:

. magnitude stretched in the u direction

w,, (X) —buJ

/wv (x)|[— D, L

magnitude stretched in the v direction

C(x) = c{

where a = triangle's area in uv coordinates
b, =b, =restlength = 1

| SIMULATING CLOTH

Implicit (Backward Euler) time integration method

* Stability means we can take large time steps

AX '\ ! | Vo + AV
Av | — M f(xg + AX. Vg + AV)

(h is step size)

SIMULATING CLOTH

Collision handling?

https://www.youtube.com/watch?v=GW416qKIxQs

CONCLUSIONS

Physics and computation

Particle-based and grid-based fluid simulation

Cloth simulation

Where to go from here?

THANK YOU!

Any questions?

