

CS 148: Summer 2016 Introduction of Graphics and Imaging Zahid Hossain

Animation

Animation

Luxo Jr. (Pixar Animation 1986)

Principles of Animation

3. The Principles of Animation

"When we consider a new project, we really study it . . . not just the surface idea, but everything about it." Walt Disney

A new jargon was heard around the studio. Words like "aiming" and "overlapping" and "pose to pose" suggested that certain animation procedures gradually had been isolated and named. Verbs turned into nouns overnight, as, for example, when the suggestion, "Why don't you stretch him out more?" became "Get more stretch on him." "Wow! Look at the squash on that drawing!" did not mean that a vegetable had splattered the artwork; it indicated that some animator had successfully shown a character in a flattened posture.

Some of this terminology was just assigning new meanings to familiar and convenient words. "Doing" a scene could mean acting out the intended movements, making exploratory drawings, or actually animating it; and once it was "done," the scene moved on to the next department. Layouts were done, backgrounds they were taught these practices as if they were the rules of the trade. To everyone's surprise, they became the fundamental principles of animation:

- 1. Squash and Stretch
- 2. Anticipation
- 3. Staging
- 4. Straight Ahead Action and Pose to Pose
- 5. Follow Through and Overlapping Action
- 6. Slow In and Slow Out
- 7. Arcs
- 8. Secondary Action
- 9. Timing
- 10. Exaggeration
- 11. Solid Drawing
- 12. Appeal

1981

Squash and Stretch

Rigidity/Flexibility

Lively Expressions

Anticipation

Slow In And Slow Out

Arcs

Principles of Animation

https://www.youtube.com/watch?v=5l2Aem7Ll3A

Keyframe Animation

Keyframes

- Specify significant poses
- Automatically fill in motion between these points in time.

http://graphics.stanford.edu/courses/cs148-10-summer/docs/10_anim_interact.pdf

Not a New Idea

Tweening: Not a fun job!

CAPS

Computer-Aided Production System: 1980

Tweening : Computer Does Interpolation

Animation Curves

Curves specify paths that objects take over time

Writing the control points p_i in terms of the parameters a_j

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ -0.5 & 0 & 0.5 & 0 \\ 1 & -2.5 & 2 & -0.5 \\ -0.5 & 1.5 & -1.5 & 0.5 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

Figure 15.9. Splines interpolating nine control points (marked with small crosses). The thick gray line shows an interpolating polynomial. The thin, dark line shows a Catmull-Rom spline. The latter is made of seven cubic segments, which are each shown in alternating gray tones.

C¹ Continuity

Fundamentals of Computer Graphics - Shirley Page: 365

Catmull-Rom Spline: Continuity

"Outgoing Tangent" becomes "Incoming Tagent" for the next Segment

Framework for Animation Curves

Tension

- Sharpness near keyframes
- Continuity
 - Different in/out tangents
- Bias
 - Overshoot or undershoot

Framework for Animation Curves

Fundamentals of Computer Graphics - Shirley Page:420

Bezier Curve

Figure 15.10. A cubic Bézier curve is controlled by four points. It interpolates the first and last, and the beginning and final derivatives are three times the vectors between the first two (or last two) points.

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

Fundamentals of Computer Graphics - Shirley Page:365

Slow-In-Slow-Out

Replace an animation parameter t with u(t)

Bezier Curve is tunable way to implement this

Key Values vs Key Frames

- Animation composed of several parameters
- Parameters may not agree on which "frame" is important, i.e. there is no "key-frame" per-se.
- Create path for each parameter, which has key-values specified in appropriate frames.

Specialized Curves for Animation

"Wiggly Splines" Kass and Anderson, SIGGRAPH 2008

Interpolating Orientations

Interpolating Matrices ?

http://www.chrobotics.com/wp-content/uploads/2012/11/Inertial-Frame.png

Gimbal Lock

Spherical Linear Interpolation (SLERP)

LERP: Linear Interpolation

Spherical Linear Interpolation (SLERP)

Quaternion rotation interpolation

Quaternions [Hamilton 1843]

Quaternions

For conversion formulae

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles

Character Animation

Recall: Hierarchical Modeling

Torso Head Shoulder LeftArm UpperArm LowerArm Hand RightArm UpperArm LowerArm Hand

Hips LeftLeg UpperLeg LowerLeg Foot RightLeg UpperLeg LowerLeg Foot

Forward Kinematics (FK)

Manipulate degrees of freedom directly, construct geometry hierarchically.

Inverse Kinematics (IK)

Determine change in parameters from position of end effector.

Inverse Kinematics (IK)

Skinning and Bone Animation

• Skeleton

- Nodes represents joints
- Joints are local Coordinate Systems (frames)
- Edges represents bones
- Skin
 - 3D model/surface driver by skeleton

Both are designed in a reference pose (rest pose)

Skeleton in Reference Pose

- Root Frame expressed with respect to the world: R_0
- Relative Joint Coordinate Frames R_1 , R_2 , R_3 ... R_j

$$R_{j} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Skeleton in Reference Pose

- Root Frame expressed with respect to the world: R_0
- Relative Joint Coordinate Frames R_1 , R_2 , R_3 ... R_j
- Mapping from local frame to world
 - $A_j = R_0 \dots R_{p(j)}R_j$, p(j): Parent of joint j

Animating Skeleton

Rotation at a joint j

$$T_j = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0\\ r_{21} & r_{22} & r_{23} & 0\\ r_{31} & r_{32} & r_{33} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Mapping from Local Frame to World in Reference Pose

$$A_j = R_0 \cdots R_{p(j)} R_j$$

Mapping from Local Frame to World in Animated Pose

$$F_j = R_0 T_0 \dots R_{p(j)} T_{p(j)} R_j T_j$$

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) – Zahid Hossain 48

Character Rigging

- Embed Skeleton into a Mesh (Skin)
 - Assign Mesh Vertex to one or more bones to allow

$$\hat{v}_i = F_j(A_j)^{-1} v_i$$

- v_i position of vertex in reference mesh
- A_j joint j in reference mesh
- F_j joint j in animated mesh
- $\hat{v_i}~$ position of vertex in animated mesh

Character Rigging

- Embed Skeleton into a Mesh (Skin)
 - Assign Mesh Vertex to one or more bones to allow

Vertex Assignments Often Done Manually (Choose the closest "bones")

- v_i position of vertex in reference mesh
- A_j joint j in reference mesh
- F_j joint j in animated mesh
- $\hat{v_i}$ position of vertex in animated mesh

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

root joint

Rigid Skin Limitations

Reference Pose

Rigid Skin Limitations

Reference Pose

Animated Pose

Leads to abrupt motion near the joint

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

Linear Blend Skinning

$$\hat{v}_i = \sum_{j=1}^N w_{ji} F_j(A_j)^{-1} v_i$$

$$A_j$$
 - joint j in reference mesh

- F_j joint j in animated mesh
- $\hat{v_i}$ position of vertex *i* in animated mesh
- w_{ji} influence of joint j on the vertex

Weight needs to be convex

$$\sum_{j=1}^{N} w_{ji} = 1, w_{ji} \ge 0$$

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

Linear Blend Skinning

Linear Blend Skinning

Maya

Linear Blend Skinning: Limitations

Candy Wrapper Effect

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

Why Candy-Wrapper in LBS ?

$$\hat{v}_i = \sum_{j=1}^N w_{ji} F_j(A_j)^{-1} v_i \quad \longleftrightarrow \quad \hat{v}_i = \left(\sum_{j=1}^N w_{ji} M_j\right) v_i$$

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

Why Candy-Wrapper in LBS ?

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf

Solution to Candy-Wrapper

- Dual Quternion Skinning [Clifford 1873]
 - Kavan et al., ACMTOG 2008
- Model rigid transformation (Rotation+Translation)
- Map 6 dimensional manifold into 8 dimensional space

LBS vs Dual-Quaternion Skinning

Linear Blend Skinning

Dual-Quaternion Skinning

http://www.cs.cmu.edu/~yaser/Lecture-9-Skinning%20and%20Body%20Representations.pdf CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) – Zahid Hossain 60

Physically Based Animation

Teaser (David will teach next week)

Two-way Solid-Fluid Coupling

Detailed Cloth Simulation

Fracture and Rigid Body

Hybrid Daisy Chain

Fluid Simulation

CS 148: Summer 2016 Introduction of Graphics and Imaging Zahid Hossain