CS 148: Summer 2016
Introduction of Graphics and Imaging
Zahid Hossain

http://www.pling.org.uk/cs/cgv.html

What We Have So Far

3D geometry | 2D pipeline

Handy Fact

matrix X

Matrices preserve flat geometry

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

Handy Fact

matrix x” — *

Matrices preserve flat geometry

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain 4

So What?

3D triangles look like 2D triangles
under camera transformations.

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

So What?

3D triangles look like 2D triangles
under camera transformations.

Use 2D pipeline for 3D Rendering !

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

Side Note

Only true for flat shapes

http://drawntothis.com/wp-content/uploads/2010/09/Random_Guy.jpg

Side Note

Only true for flat shapes

http://drawntothis.com/wp-content/uploads/2010/09/Random_Guy.jpg

Frame Buffering

Double and Triple Buffering

—_—

» - “~
NG ~

Tearing : Data from multiple frames appear on the screen at the
same time. This happens when GPU rendering rate and monitor
refresh rate are not synced.

http://www.newcluster.com/wp-content/uploads/2015/01/g-sync_diagram_0.jpgitokgxy9kpos

Double Buffering with V-Sync

Front Buffer

1

Back Buffer Front Buffer
(video memory)

SwapBuffer: Either copy Back Buffer to Front Buffer,
or Swap Pointers (Usually in Fullscreen mode).

l Vertical Retraces —l
Double- i Buffer 'g draw | . 5§ draw o draw | _ I draw | _ K
buffering SR B | [c D

Video c:; C cc;B cr;
| memory Al B| C D

Double Buffering with V-Sync

Front Buffer

Double-
buffering

Triple Buffering with V-Sync

Front Buffer

}?p

1 1 I

Back Buffer1 Back Buffer 2 Front Buffer
(Video Memory)

l Vertical Retraces —l
Triple- suffer1 B draw] draw . i draw
buffering o A] B c E
Buffer 2 draw 5 draw ' I
B [& o
Video dop dop do
memory A B C D

Triple Buffering with V-Sync

Front Buffer

1

Triple-
buffering

Occulusion

Painter’s Algorithm

Draw items one at a time

Painter’s Algorithm

Draw items one at a time

Painter’s Algorithm

A

Draw items one at a time

Painter’s Algorithm

A

Draw items one at a time

Painter’s Algorithm

Draw items one at a time

What Order?

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

21

What Order?

Early Hidden Surface Approaches

*Pre-compute rendering order
*Cut geometry as needed

A Characterization of Ten Hidden-Surface Algorithms

IVAN E. SUTHERLAND*, ROBERT F. SPROULL**, AND ROBERT A. SCHUMACKER*

This paper discusses the hidden-surface problem from the point of view
of sorting. The various surfaces of an object to be shown in hidden-surface

Observation

Each pixel can decide what is on
top independently.

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

24

Observation

Each pixel can decide what is on
top independently.

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

25

Z Buffer

Color Buffer (RGB each cell) Depth buffer (one number each cell)

Z-Buffer

http://upload.wikimedia.org/wikipedia/commons/4/4e/Z_buffer.svg

Z-Buffer Issues: Resolution

far + near | 2 . far - near

<ndc — |
far — near = (far — near) zZyorid

Non linear !

Z-Buffer Issues: Resolution

far + near | 2 . far - near

|
far — near = (far — near) zZyorid

<ndc =

Z-Buffer Issues: Depth Fighting

http://ps-2.kev009.com/CATIA-B18/basug_C2/basugbt1510.htm

Z-Buffer Issues: Depth Fighting

iy

Hack: Scale and add offset
“glPolygonOffset”

http://ps-2.kev009.com/CATIA-B18/basug_C2/basugbt1510.htm

Cull [kuhl]:

To identify and throw away invisible geometry to
save processing time.

Basic Culling Strategies

* Backface culling: remove geometry facing
away from the camera

* View volume culling: remove geometry
outside frustum

* Occlusion culling: remove invisible geometry

Backface Culling

RN
A

2
s
o

.yi:iﬁitrf}iaﬁ‘# ~
.n'.H E‘ﬁl."‘.. L“q L J‘ﬁ"‘. P

Backface
culling

http://medialab.di.unipi.it/web/IlUM/Waterloo/node70.html

Hidden surface

removal

Specifying Triangle Orientation

glDisable/glEnable (GL CULL FACE)

ﬂafaa/t:

glFrontFace (GL CCW)

View Volume Culling

Potential strategies:

e Store scene hierarchically
e With bounding volumes

 Compute viewing frustrum
* Don’t render volumes that are clearly outside frustrum

http://i.minus.com/i75qjiyFQzVCl.jpg

Occlusion Culling: Portal Rendering

http://www.aaid.ca/flash/media/hkmh/images/floor1/000a-geology-portal-cg-rendering.jpg

Occlusion Culling: Portal Rendering

Potentially Visible Set

http://www.cs.virginia.edu/~luebke/publications/portals.html

Occlusion Culling: Portal Rendering

Potentially Visible Set

http://www.cs.virginia.edu/~luebke/publications/portals.html

Occlusion Culling: Portal Rendering

Mirrors ?

Potentially Visible Set (PVS)

http://www.cs.virginia.edu/~luebke/publications/portals.html

Summary of Culling Techniques

view frustum « detall

o~
!
\

‘ occlusion

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

41

Acceleration Structures

Goal of Acceleration Structures

* Quickly reject objects that are outside the
viewing volume

* Query for intersections efficiently

Spatial Hierarchies

Letters correspond to planes (A)

Spatial Hierarchies

Letters correspond to planes (A,B)

Spatial Hierarchies

Letters correspond to planes (A,B,C,D)

|~ -~
A }r

Spatial Hierarchies: Variations

0ol

o O

O

O

%0
G [

O

SOO

kd-tree

oct-tree

bsp-tree

Octree

e Each node has 0 or 8 children

* Each node can equally subdivide its space (an AABB) into eight
subboxes by 3 midplanes

e Children of a node are contained within the box of the node itself

 Stop subdividing when number of objects/primitives falls below a
threshold or maximum depth has reached.

* Recursively render cells that intersects with the viewing volume

/

/

K-d Tree

* Begin with the global bounding box containing all primitives.

 Choose an axis and a splitting plane perpendicular to that axis

e Subdivide the primitives on both sides of the plane into two groups
e Usually done in a balanced manner

* Stop when the number of primitives in each single group is below a

threshold

A
‘\

)

A

-

A

A i
)))

) @ e g g

A o
N \ il

0

Shadows

Shadows

Shadows: Spatial Cue

http://mamassian.free.fr/papers/mamassian_tics98.pdf

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain 52

Shadows: Realism

http://ivl.calit2.net/wiki/images/5/55/17_ShadowMappingS15.pdf
CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain 53

Shadow

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016)

— Zahid Hossain

54

We will only concentrate on hard-shadows

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain

55

Shadow Mapping

* First Pass

* Render the Scene from the light Source
* Pretend the light is the “camera”

 Store the depth buffer as a texture

* Heightfield — tells us the “distance” of the nearest points from

the light source. ,
Light’s POV depth map

light
8 ~— shadow map
R
LANRN

WA\
1\ DO\

depth value

Shadow Mapping

* Second Pass
* Project the depth buffer texture from the light’s P.O.V
* Render the scene from the camera position

Recall Projective Texturing

Projective Texturing (RECALL)

* Map NDC (-1, 1) to Texture Coordinate space (0-1)
* Scale and add Bias

s” 05 0 0 05][¢
" | 0o 05 0 05]| ¢
r’ | 0 0 05 05 r!
_ q// d TextureSpace _ 0 0 0 1 4 L q/ 4 NDC

Final texture coordinates after perspective-correct interpolation of (S”, t”, 7“”, q")

/Y \. |
(Q//’q// q,,) Compare this with depth

Shadow Mapping

* Second Pass
* Project the depth buffer texture from the light’s P.O.V
* Render the scene from the camera position

 Compare fragment’s depth (projected r texture
coordinate) to the depth stored in texture

cye

v, isin

shadow pixel seen

depthMapValue - texture(depthTexture, projCoords.st / projCoords.q);

fragmentDepth (projCoords.r / projCoords.q);
float shadow fragmentDepth - depthMapValue

Shadow Mapping: Issues

* Limited field of view of depth map

light

field of
vView

Shadow Mapping: Issues

* Limited field of view of depth map

e /-Fighting
* Add scale and bias — similar to glPolygonOffset
* Getting it right is complicated

Shadow Mapping: Issues

* Limited field of view of depth map

e /-Fighting
* Add scale and bias — similar to glPolygonOffset
* Getting it right is complicated

» Sampling problem (aliasing)
e Larger depth map may mitigate some of it

1

Shadow Mapping: Issues

* Limited field of view of depth map
e /-Fighting
* Add scale and bias — similar to glPolys~~~
e Getting it right is complicat~
* Sampling prot e‘ 200
paP ymitigate some of it

Deferred Rendering

a.k.a Deferred Shading

Deferred Rendering

* So far: we did Forward Rendering

* Lots of fragments are wasted due to overdraw
* Complex Lighting/Shading computation wasted

* Solution: “Defer” lighting computation until we
have figured out all the pixels that end up on the
screen

* Deferred Rendering can handle lots of lights

* Complexity:
* Forward Rendering: Num_Objects * Num_ Light
e Deferred Rendering: Num_Object + Num_Light

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering

Two Pass
1. Geometry Pass
2. Lighting Pass

GEOMETRY

LIGHTING

G-BUFFER

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering

Two Pass
1. Geometry Pass
2. Lighting Pass

POSITION

SPECULAR

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering

* Transparency still done through Forward Rendering
* Need to copy the Depth Buffer.

LeamOpenGL - 8 m

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering: Lots of Light

* Can handle lots of light: key is Light Volume
* Shade pixels that are close to a light
 Why does not “if-else” branch work for this on the GPU?

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering: Lots of Light

* Can handle lots of light: key is Light Volume
* Shade pixels that are close to a light
 Why does not “if-else” branch work for this on the GPU?

* Draw one light volume at a time: accumulate colors

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering: Lots of Light

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Deferred Rendering: Challenges

* Doesn’t support MSAA (Multiple Sample Anti-
Aliasing)

* Extra frame buffer memory

* Transparencies need to be done with Forward
Rendering

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading

Challenges of Rasterizers

Shadows and Reflections

http://artist-
CS 148: Introduction to Computer Graphics and Imaging (Summer Z%fgrgéﬁmgﬁmodels/uploads/mantalray.jpg4

Transparencies

http://www.archicadwiki.com/Bugs/Transparencyln3dWindow

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain 75

Depth of Field

http://www.seemsartless.com/guides/camera-dof-cars-fast-360.jpg

CS 148: Introduction to Computer Graphics and Imaging (Summer 2016) — Zahid Hossain 76

CS 148: Summer 2016
Introduction of Graphics and Imaging
Zahid Hossain

http://www.pling.org.uk/cs/cgv.html

