
Homework 1: Rasterization and Transformation
CS 148: Introduction to Computer Graphics and Imaging (Summer 2016)

Stanford University

We derived Bresenham’s algorithm for rasterizing lines in class. In this assignment, we are
going to derive and implement a similar algorithm for rasterizing circles. In particular, we will
rasterize the quadrant of the circle x2 + y2 = R2 where x, y ≥ 0 and positive integer R.

We suggest you to read ”Computer Graphics Principles and Practice - Foley et. al” section 3.2
”Scan Converting Lines” and section 3.3 ”Scan Converting Circles.” It should be included in the
handout as reading.pdf.

One obvious way you could attempt to rasterize such a circle would be to iterate over each x
corresponding to a pixel center and light up the pixel closest to (x,

√
R2 − x2).

Problem 1. Why is this approach bad? Provide at least two reasons.

Solution. Evaluating the square root
√
· is expensive, and the resulting curve may have gaps in

places with steep slope.

Instead, we will imitate our development of Bresenham’s algorithm for rasterizing lines. In
fact, we can simplify matters somewhat: We can employ the symmetry of the circle to reduce the
number of pixels we have to rasterize. Then, each time we rasterize a pixel we will also light up
its symmetric counterpart.

Problem 2. Suppose we are given (x, y) on the 45◦ arc of the circle between (0, R) and (R/
√

2, R/
√

2).
Find a corresponding symmetric point on the 45◦ arc from (R/

√
2, R/

√
2) to (R, 0) that takes no additional

operations to compute.

Solution. Reflect over the line y = x to get (y, x).

For deriving methods like Bresenham’s algorithm, it is often more convenient to use implicit
forms of curves. So, we define F(x, y) = x2 + y2 − R2. Then, our curve is given by F(x, y) = 0.
Note that F(x, y) < 0 when (x, y) is inside the circle and F(x, y) > 0 when (x, y) is outside the
circle.

Just as in our method for rasterizing lines, we will be marching from left to right. Let’s say we
are at a pixel whose center is (x, y). Then, neighboring pixel centers are given by (x ± 1, y± 1).
Our algorithm will make a local decision about which neighbor to choose next in its walk around
the circle.

Problem 3. Show that the slope of the circle in the 45◦ arc we are drawing satisfies −1 ≤ dy/dx ≤ 0. Use
this fact to justify why if we trace pixels in increasing x along the circle, it is sufficient to consider only the
neighbors (x + 1, y) and (x + 1, y− 1) of (x, y).
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Solution. In this region we have y =
√

R2 − x2 and 0 ≤ x ≤ R/
√

2. Differentiating,

dy
dx

=
−x√

R2 − x2

This value is obviously ≤ 0 for all x ≥ 0. Furthermore, it is easy to show that it is greater than −1
for x ≤ R/

√
2. This bound on the slope shows that starting at a pixel you will ever only move to

the right or down and to the right; anywhere else would produce slope outside the range we just
computed.

Suppose we just drew the pixel at (xP, yP). Our method will have the property that the circle
will intersect the segment between (xP, yP − 1/2) and (xP, yP + 1/2) (it may help if you draw this
for yourself). We will define our decision variable to be d = F(xP + 1, yP − 1/2).

Problem 4. Give a rule using d for choosing between (xP + 1, yP) and (xP + 1, yP− 1) using the property
explained above.

Solution. Move east when d < 0, and move southeast when d ≥ 0.

We now have a rule for choosing which pixel to visit next, but now we’ll need to update d.
We will call the move from (xP, yP) to (xP + 1, yP) a move east (E) and the move from (xP, yP) to
(xP + 1, yP − 1) a move southeast (SE).

Problem 5. Provide update rules of the form dnew = dold + ∆E and dnew = dold + ∆SE to be applied
depending on which pixel you choose.

Solution. Take

∆E = F(xP + 2, yP − 1/2)− dold = 2xP + 3
∆SE = F(xP + 2, yP − 3/2)− dold = 2xP − 2yP + 5

Excitingly, you should find that if xP, yP are integers, so are ∆E and ∆SE. This suggests that we
can do integer arithmetic while rasterizing circles, which can buy us some time!

To complete our rasterization algorithm, we just need a way to start out. For simplicity, we’ll
actually change the convention we explained in class and assume pixel centers coincide with integer
coordinates. So, we’ll start at (x, y) = (0, R).

Problem 6. Provide an initial value for d and show that it isn’t an integer. Suggest an alternative decision
variable h of the form h = d− c for some fixed constant c so that the initial value of h is an integer, and
provide update and decision rules for h.

Solution. We find d0 = 5/4− R. Take c = 1/4, so h0 = 1− R, an integer. Checking if d < 0 becomes
a check if h < −1/4, or equivalently if h < 0 since h is an integer. Update rules for h are the same
as those for d.
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Problem 7. What kind of transformation is the following matrix ? - describe it precisely for full point.
What does the eigen vector, with non-zero eigenvalue, of this matrix correspond to ? (You don’t need to do
any algebra for this - simply state).  cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)


Solution. This matrix is a rotation matrix about the y-axis by an angle θ. The non-zero eigen vector
is the axis of rotation, in this case the y−axis.

Problem 8. Write down the projection of a vector ~v on another vector ~u.

Solution. dot(v,u)
dot(u,u)b

Figure 1: The red frame depicts a 2D camera with position b and basis vectors ~u,~v. Consider
the point p is given in global coordinate, i.e. with respect to the blue frame located a (0, 0) with
canonical basis.

Problem 9. Consider a 2D camera frame, as shown in red in Figure ??, with a position b and basis vectors
~u,~v. This camera is looking at a point p that is given in the global coordinate (x, y) (w.r.t the blue frame). In
the lecture we have learned that p could be written in the homogeneous coordinate system as the following: x

y
1

 =

 ux vx bx
uy vy by
0 0 1


︸ ︷︷ ︸

M

 x′

y′

1

 where p′ = (x′, y′) : is the coordinate in the local camera frame

Now, one could take the inverse of M to compute p′, but we could also do the same much more easily using
projections by answering the following short questions:
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1. Write down the vector that point to p with respect to the camera position b.

2. Write down the projection of the above vector on ~u and ~v separately (Assume: |~u|, |~v| = 1)

3. What are these projections in terms of the camera frame and the local coordinate p′? Write these
projections in form a homogenous transformation.

4. If the above transformation allows you to compute p′ given p then you must have computed the
inverse of M. What special properties of the basis vectors ~u,~v have allowed you to compute this
inverse using only projections ?

Solution. 1. ∆p = p− b

2.

x′ =
∆p · ~u
~u · ~u = (p− b) · ~u = ~u · p− b · ~u, (|~u| = 1)

y′ =
∆p ·~v
~v ·~v = (p− b) ·~v = ~v · ~p− b ·~v, (|~v| = 1)

3. The projections are precisely the coordinates of the point p in the local camera frame. x′

y′

1

 =

 ux uy −b · ~u
vx vy −b ·~v
0 0 1

 x
y
1


4. ~u and ~v are orthogonal, i.e. ~u ·~v = 0.

Figure 2: n is the normal vector of the blue plane., i.e its perpendicular to the plane and |n| = 1. v′

is the projection of the vector v on the plane.

Problem 10. Referring to Figure ??: consider a plane with normal n, |n| = 1. Show that the projection v′

of a vector v on the normal plane (defined by the normal n) is given by.

v′ =
(

I − nnT
)

v
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(Hint: A dot product between two column vectors a and b can be written as matrix multiplica-
tion, i.e. a · b = aTb = bTa.)

Solution. The magnitude of the projection of v on n is n · v = nTv. Therefore the projected vector
is n

(
nTv

)
=
(
nnT) v. Hence the “red” vector is v−

(
nnT) v =

(
I − nnT) v.

Figure 3: An ellipse with −a . . . a as the major axis and −b . . . b the minor axis

Problem 11 (Extra Credit). Rasterize an ellipse that is described the following equation:

b2x2 + a2y2 = a2b2

You can assume that a > b, thus −a . . . a is the major axis and −b . . . b is the minor axis. Rasterizing only
one quadrant is sufficient for the purpose of this extra credit problem.
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