
Realtime Water Simulation
Benjamin Harry
CS148 Final Project

Project Goal
Create a realtime water simulation that exhibits
characteristics of a real body of water.

• Generate believable waves in realtime

• Light reflection and transmission

• Caustics on bottom surface

Relevance to Course
Using OpenGL

Lighting Effects:

• Reflection - Fresnel Effect

• Refraction - Snell’s Law

Implementing Waves
Method for wave animation from Matthias Müller-Fischer.

Initialized vertex heights for waves using sum of sines
function.

Initialize horizontal velocities to zero.

For each time step update the vertex positions based
upon forces acting on waves.

// Implementing the waves using height field.

for all i, j {

 f = c2 * (u[i+1,j] + u[i-1,j] + u[i,j+1] +

 u[i,j-1] - 4u[i,j]) / h2;

 v[i, j] = v[i, j] + f * 𝝙t;

 unew[i, j] = u[i, j] + v[i] * 𝝙t;

}

for all i, j: u[i, j] = unew[i, j];

Height Field Conclusion
Very easy to implement.

Generated waves had decent animation, although
could see triangles when looked closely.

Data updated in CPU, which requires a lot of
processing and copying data in for loops.

Degraded frame rate.

Summing Sine Waves
Sum sine waves with varying amplitudes,
wavelengths, and directions to get height at each
vertex.

Need to also have the derivative to get the normal
at each vertex.

Perform the calculations in the GPU.

Summing Sine Waves
Waves have "blobby" appearance. Sometimes
sine wave shape is obvious (using random
directions).

Improved by adding high frequency normal map in
the fragment shader.

Lighting Effects
Reflections using OpenGL cube map feature.

Improved the look of reflections using Fresnel
effect.

• Viewing angle affects how much light is
reflected and transmitted.

Caustics added using Snell's law and wave
normals.

Challenges
Figuring out which method to use to generate
waves.

• Overwhelming amount of information on the
internet.

• Implement wave calculations on CPU or GPU?

Overcoming blobby appearance of waves.

• Adding animated high frequency normal map.

References
Bouny, Jeremy. "Realistic Water Shader for Three.js." GitHub.
github.com/jbouny/ocean

de Greve, Bram. "Reflections and Refractions in Ray
Tracing." Nov 13, 2006. graphics.stanford.edu/courses/
cs148-10-summer/docs/2006--degreve--
reflection_refraction.pdf

de Vries, Joey. Learn OpenGL. www.learnopengl.com

Finch, Mark. "Effective Water Simulation from Physical
Models." GPU Gems. 2004. developer.nvidia.com/gpugems/
GPUGems/gpugems_ch01.html

Guardado, Juan. "Rendering Water Caustics." GPU Gems. 2004.
developer.nvidia.com/gpugems/GPUGems/gpugems_ch02.html

Hollasch, Steve. Steve’s Web Pages. Nov 4, 2007.
steve.hollasch.net/cgindex/render/refraction.txt

Müller-Fischer, Matthias. "Fast Water Simulation for Games Using
Height Fields." GDC 2008. matthias-mueller-fischer.ch/talks/
GDC2008.pdf

Tessendorf, Jerry. "Simulating Ocean Water." 1999 - 2001.
graphics.ucsd.edu/courses/rendering/2005/jdewall/
tessendorf.pdf

