
Programmatically generated
landscapes
Darshan, Sagar

Problem Statement
Programmatically generate a landscape which looks like this
image.

- Terrain
- Water
- Land
- Mountains

- Clouds
- Grass

Terrain generation: Height maps
● Generated height map for entire terrain using

diamond and square algorithm.
● Terrain is divided into ocean, beach, grass, green

mountains, brown mountains and ice based on
height of point.

● Different textures are used for each region

Terrain generation: Interpolation
● Mixed texture with solid colors for better

effect.
● Interpolated textures/color between regions

(ice and sand) so as to not have discontinuity
in the scene.

● Filled background with clouds generated on
2D plane.

Terrain generation: Smoothing
● Smoothing: Computed one normal

for each vertex by taking average of
normals of all surrounding faces.
Removes triangulation!

● Laplacian smoothing to avoid any
abrupt spikes and depression in
terrain.

Water waves
● Used current_time and xy position to

calculate delta z.

● Delta z of all surrounding points is known,
hence normals of all surrounding faces is
computed. And finally normal of vertex is
computed.

Water waves
● Ability to position epicenter of single/multiple waves wherever desired in scene.
● Parameters to control speed of wave, roughness of sea etc

Clouds: Perlin Noise

16x zoom 8x zoom 4x zoom 2x zoom 1x zoom

16x zoom
16x weight

8x zoom
8x weight

4x zoom
4x weight

2x zoom
2x weight

1x zoom
1x weight

average

Clouds: Perlin Noise

3D noise = n layers of 2D noise

texture

Don’t look at it from the wrong side
Extension: render cubes instead of quads

Clouds: 3D Perlin Noise

Image 1: No alpha channel

Image 2: alpha = 0.1 * perlin

Image 3: Cloud-like shape

if (noise < 0.8) {
 noise = noise^2;
} else if (noise < 0.6) {
 noise = noise^4;
} else if (noise < 0.4) {
 noise = noise^8;
} else if (noise < 0.2) {
 noise = noise^16;
}

Clouds: Transparency

Render clouds, then render terrain Render terrain, then render clouds

Grass: Layers of triangles

- Add N triangles on top of the triangle for each triangle
- Texture it with an image which looks like grass
- Problem: triangles are big

Grass: Strands
Create another texture for the alpha channel.

- Use a parameter grass_density (how thick is the grass)
- Set the initial alpha to 0
- Sample points in the texture area and set alpha to 1

Cast a fake shadow, points in the lower layers appear darker.

 fakeShadow = 0.6 + 0.4 * layer;
 texColor = texture(...grass…) * fakeShadow;

A grass strand becomes thinner at a higher layer.
- For each strand, compute the max_layer it should be

seen at
- Set a lower alpha in the fragment shader for higher

layers based on this number

 maxLayer = pow(i / strandsPerLayer / layers, 0.7);

Grass: Putting it together

Grass: Animation
Points in the higher layer are displaced more than the roots.

Compute a number displacement in each iteration:

 glm::vec3 gravity(0.0f, -0.8f, 0.0f);
 glm::vec3 force(sin(glfwGetTime()) * 0.5f, 0.0f, 0.0f);
 glm::vec3 disp = gravity + force;

Displace higher layers more than the lower layers

 vec3 layerDisplacement = pow(layer, 3.0) * displacement;
 vec4 newPos = vec4(pos + layerDisplacement, 1.0);
 gl_Position = projection * modelView * newPos;

http://www.youtube.com/watch?v=7nh_auTrte4

Final Results

http://www.youtube.com/watch?v=ZRCC4YToGH8

References
http://www.catalinzima.com/xna/tutorials/fur-rendering/

http://lodev.org/cgtutor/randomnoise.html

https://github.com/rgruener/Terrain_Generator/

http://www.gameprogrammer.com/fractal.html

http://www.catalinzima.com/xna/tutorials/fur-rendering/
http://www.catalinzima.com/xna/tutorials/fur-rendering/
http://lodev.org/cgtutor/randomnoise.html
http://lodev.org/cgtutor/randomnoise.html
https://github.com/rgruener/Terrain_Generator/
https://github.com/rgruener/Terrain_Generator/
http://www.gameprogrammer.com/fractal.html
http://www.gameprogrammer.com/fractal.html

Thank you

http://www.youtube.com/watch?v=HkxQhOBi2fA

