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Problem Statement
Programmatically generate a landscape which looks like this 
image.

- Terrain
- Water
- Land
- Mountains

- Clouds
- Grass



Terrain generation: Height maps
● Generated height map for entire terrain using 

diamond and square algorithm. 
● Terrain is divided into ocean, beach, grass, green 

mountains, brown mountains and ice based on 
height of point.

● Different textures are used for each region



Terrain generation: Interpolation
● Mixed texture with solid colors for better 

effect.
● Interpolated textures/color between regions 

(ice and sand) so as to not have discontinuity 
in the scene.

● Filled background with clouds generated on 
2D plane.



Terrain generation: Smoothing  
● Smoothing: Computed one normal 

for each vertex by taking average of 
normals of all surrounding faces. 
Removes triangulation!

● Laplacian smoothing to avoid any 
abrupt spikes and depression in 
terrain.



Water waves
● Used current_time and xy position  to 

calculate delta z.

● Delta z of all surrounding points is known, 
hence normals of all surrounding faces is 
computed. And finally normal of vertex is 
computed.



Water waves
● Ability to position epicenter of single/multiple waves wherever desired in scene.
● Parameters to control speed of wave, roughness of sea etc



Clouds: Perlin Noise
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Clouds: Perlin Noise

3D noise = n layers of 2D noise

texture

Don’t look at it from the wrong side
Extension: render cubes instead of quads



Clouds: 3D Perlin Noise

Image 1: No alpha channel

Image 2: alpha = 0.1 * perlin

Image 3: Cloud-like shape

if (noise < 0.8) {
  noise = noise^2;
} else if (noise < 0.6) {
  noise = noise^4;
} else if (noise < 0.4) {
  noise = noise^8;
} else if (noise < 0.2) {
  noise = noise^16;
}



Clouds: Transparency

Render clouds, then render terrain Render terrain, then render clouds



Grass: Layers of triangles

- Add N triangles on top of the triangle for each triangle
- Texture it with an image which looks like grass
- Problem: triangles are big



Grass: Strands
Create another texture for the alpha channel.

- Use a parameter grass_density (how thick is the grass)
- Set the initial alpha to 0
- Sample points in the texture area and set alpha to 1

Cast a fake shadow, points in the lower layers appear darker.

  fakeShadow = 0.6 + 0.4 * layer;
  texColor = texture(...grass…) * fakeShadow;

A grass strand becomes thinner at a higher layer.
- For each strand, compute the max_layer it should be 

seen at
- Set a lower alpha in the fragment shader for higher 

layers based on this number

  maxLayer = pow(i / strandsPerLayer / layers, 0.7);



Grass: Putting it together



Grass: Animation
Points in the higher layer are displaced more than the roots.

Compute a number displacement in each iteration:

  glm::vec3 gravity(0.0f, -0.8f, 0.0f);
  glm::vec3 force(sin(glfwGetTime()) * 0.5f, 0.0f, 0.0f);
  glm::vec3 disp = gravity + force;

Displace higher layers more than the lower layers

  vec3 layerDisplacement = pow(layer, 3.0) * displacement;
  vec4 newPos = vec4(pos + layerDisplacement, 1.0);
  gl_Position = projection * modelView * newPos;



http://www.youtube.com/watch?v=7nh_auTrte4


Final Results



http://www.youtube.com/watch?v=ZRCC4YToGH8
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Thank you



http://www.youtube.com/watch?v=HkxQhOBi2fA

