

	

	
	

REAL-TIME NON-EUCLIDEAN RAY TRACER ILLUSIONS

Michael Johnson (mikejohn), Lingshu Tang (lingshu)

Stanford University
CS148 Introduction to Computer Graphics and Imaging

Instructor Zahid Hossain

Goal: Our proposal was to develop a real-time ray tracer to maneuver through a non-Euclidean space scene and use illusions
to display the unusual behaviors of this environment. The first technically challenging aspect was to achieve real-time ray tracing
at a reasonable frame rate. The second challenging problem was to construct our non-Euclidean space in a mathematical manner
and to figure out how objects and distance are affected by the non-Euclidean space.

1. Introduction

Unlike the traditional three-dimensional Cartesian
space, a non-Euclidean space does not follow all five of
Euclid’s postulates. The two most studied non-Euclidean
spaces are hyperbolic and elliptical space (see Fig. 1).
Ordinary objects are distorted due to distance variation
characterized by the non-Euclidean space. For instance, a
sphere will be stretched in the z-axis while being
compressed in the x-y axis in the center of a hyperboloid
space. Our goal was to utilize a real time ray tracer to view
the misshapen objects and stretch or compress distance
defined by our non-Euclidean space.

2. Approach

Inspired by Varun Ramesh’s project Dygra [1], we
wanted to create a space where locations and distances defy
our traditional understanding. Initially we thought adding
portals to our regular Euclidean space is enough to define
our non-Euclidean space, similar to the game Portal.
Although implementing portals into our world would make
our space non-Euclidean, we believe it wasn’t technically
difficult or interesting. We can simply change the view of
our camera based on the camera’s coordinates as it moves
through the scene. Thus, our interest shifted to creating a
mathematical model of a hyperboloid space where the
outline of spheres or cubes will be defined by the space.
With that in mind, Mike began by implementing the
framework to conduct real time ray tracing while Ling
worked on defining the hyperboloid space.

Figure 1. Example of Euclidean and Non-Euclidean

Space

3. Ray Tracing Strategy and Challenges
To get started, Mike’s initial strategy was to build a real

time ray tracer on top of CS148’s HW4. Mike used the
library Simple DirectMedia Layer version 2.0.4 (SDL2) to
handle keyboard / mouse inputs and render the images as
high as 60 frames per second [7]. This game loop allowed
us to move through the scene relatively fluidly and view the
scene’s shapes by changing the camera’s position, heading,
and pitch. Our first scene consisted only of a simple sphere.

Mike was able to implement a real time ray tracer on top
of HW4 – with one small caveat. The objects within the
scene were in homogenous coordinates, and was not able to
transform the view back to world view due to difficulty
uncovering the underlying assumptions made by the CS148
staff for HW4. Thus our objects are stretched in the z-
direction [2]. Since the transformation matrices were not
easily accessible and because our machine’s local CPU was
not be able to handle the loads involved with real-time ray
tracing anyway, Mike went on to develop a custom ray
tracer in OpenCL (C language).

4. Non-Euclidean Space Implementation and Challenges

Ling’s goal was to understand the mathematics behind
hyperboloid one sheet space and how distances are varied
within the space; based on the curvature of the hyperboloid.
Also, he wanted to convert Euclidean distance into
hyperbolic distance for the scene. Unfortunately, after
reading several articles regarding the math behind
hyperbolic space [3], we quickly realized that implementing
the space mathematically in computer graphics isn’t
something achievable within weeks. Ling went on to try the
Euclidean distance to hyperbolic distance but he had little
success (see Fig. 2). The team then decided to pursue a
different approach. Our new approach is to generate a
hyperboloid with HW4’s code with a new intersection
function (see Fig. 3). After that, Ling added a sphere into
the hyperboloid where it is distorted due to the confinement
of the hyperboloid space [2].

	

	
	

5. Ray Tracer in OpenCL

Our first attempt to develop a real-time ray tracer relied
entirely on the CPU for computations and rendering. This
significantly constrained the program’s ability to compute
the path of rays beyond a simple a scene as shown in Figure
3. Additionally, our ray tracer was far from real time,
rendering below 2 frames per second. Thus, we determined
that utilizing the machine’s GPUs for computations would
drastically improve the frame rate of our ray tracer. We
researched potential solutions for GPU use including
CUDA, OpenGL compute shaders, and OpenCL, ultimately
deciding to use OpenCL due to Mike’s proficiency writing
in C.

Unsatisfied with our first attempt, Mike implemented
the real-time ray tracer using OpenCL and a C++ program
with SDL2 and OpenGL. As before, Mike used SDL2 to set
up the main game loop at a maximum of 60 frames per
second, handle all keyboard / mouse events, open a window,
and render the scene. Mike then used OpenGL to maintain
and update matrices associated with applying user inputs to
the position, heading, and pitch of the camera, or the
position of the objects in the scene. We wanted the objects
to be defined in the world coordinate system, so we passed
the view matrix to the kernel to put the camera in the world
coordinate system before the ray tracer began computations.

The most challenging aspect of this project came in
writing the custom ray tracer in kernel code (C), which does

not
not

allow for recursive functions, printing to the screen, or other
basic libraries, and then implementing the communication
between the GPU and the CPU using OpenCL’s C++
Bindings. We drastically underestimated the amount of time
it would require to complete this task as debugging kernel
code is extremely difficult without the ability to easily print
to screen.

Mike built the ray tracer to account for reflections,
shadows (also handling shadow acne), anti-aliasing, Phong
shading, and rendered a few basic shapes including spheres
and planes [4]. Mike implemented the first scene consisting
of four checkered patterned planes for a ground plane,
ceiling, and two tilted walls, with four spheres, two of which
are moving back and forth along the y axis. Fig. 4 shows a
snap shot of this scene, and a demo has been uploaded to
YouTube [5]. Even with this simple scene, we only
achieved a maximum of about 10 frames per second, and
turned off anti-aliasing and specular lighting to do so,
highlight the computationally complexity required for real-
time ray tracing.

6. Non-Euclidean and illusions

After this first scene was created, we went on to attempt
to implement an illusion using non-Euclidean geometry.
This illusion would be a tunnel which from the outside
looked of normal length, but once the user was in the tunnel,
seemed longer than it appeared. This effect would be
achieved by utilizing aspects of non-Euclidean geometry
and expanding space within the tunnel.

Mike and Ling both implemented the rendering of
cuboids (rectangular prisms), using those as building blocks

Figure 2: Algorithm for Euclidean distance hyperbolic distance

Figure 4: Scene one of GPU driven ray tracer

Figure 3: non-Euclidean Ray Tracer (First Attempt)

	

	
	

to create the tunnel. Mike then implemented the tunnel
expansion by scaling the camera ray direction in the +z
direction, creating the illusion of an expanded tunnel for the
non-Euclidean space effect. Fig. 5 displays how a ray could
be scaled to create this effect.

Finally, fig. 6 and 7 show two separate snap shots of the
tunnel both outside and then inside of the tunnel, and we
uploaded a demo to YouTube [6]. In the demo, we see the
user enter the non-Euclidean space where the tunnel seems
to extend and the time to travel through the tunnel is much
longer than the time to travel around the tunnel. The abrupt
change from Euclidean to non-Euclidean space is a result of
some challenges discussed in the next section.

7. Challenges and Future Work

We had several challenges along the way to come this
far. First, we believe this project was quite large in scope
attempting to implement a real-time ray tracer using GPUs
while doing so in a non-Euclidean environment. Each of
these pieces took a significant amount of time to understand
and then implement to the point where we ran out of time to
fully explore a non-Euclidean space with other aberrations
and portals.

Second, the implementation of the ray tracer from
scratch in kernel code was more difficult than anticipated.
Code executed on the kernel does not allow for recursions,
does not easily enable printing to the screen which made
debugging difficult, and disallowed the use of libraries to,
for example, multiply matrices by a vector. Additionally,
misunderstood at the time, as the kernel code grew in size
(e.g. adding more code for the tunnels), the frame rate of our
ray tracer slowed down significantly. One deficiency in our
code’s structure was generating our scene from the kernel
code itself rather than generating the scene in the C++
program (like in HW4), and passing the details of the scene
to the kernel. The ray tracer would have had a much
improved frame rate if done so.

The final challenge was the execution of the tunnel
illusion. Although, the process to expand the space within
the tunnel was not as difficult to implement, rendering the
tunnel such that when the user views into the tunnel from
the outside, the inside of the tunnel already looks expanded.
This is the reason for the abrupt change from Euclidean to
non-Euclidean space as the user enters the tunnel, the latter
which appears to extend the length of the tunnel. Since we
needed to keep track of when a ray enters the tunnel and
exits the tunnel, we had to include other shapes in the scene
to mark these points. This required writing a second
intersect function for a shape in which instead of
determining the point where the ray intersected with the
outside of the cuboid for example, the ray intersected with
the inside of the cuboid. Furthermore, we had some trouble
making the boundary shapes translucent with our current
ray tracer which blocked the entrance to the tunnel.

In the future to improve the project, we could speed up
the ray tracer by leaving only essential functions in the
kernel code and implementing an algorithm such as
bounded kd-trees to improve the processing of reflections.
Furthermore, if time permitted, we would have liked to fix
the few issues with the current tunnel illusions as well as
create portals or other aberrations, for example, anything
with the region of a shape will have the laws of non-
Euclidean geometry applied to the demonstration. Also,
using a computer with a faster graphics card would have
helped as well.

Figure 5: Depiction of ray direction scaling. To create
non-Euclidean effect, must multiply desired direction of

ray by scale.

Figure 6: Tunnel illusion from the side.

Figure 7: Tunnel illusion from within the tunnel. In this
example, the camera ray directions are scaled so the
tunnel seems longer than it appears from the outside.

	

	
	

8. Conclusions
To implement a real-time ray tracer is not easy. To

implement a real-time ray tracer that can trace non-
Euclidean space is an even harder challenge. Despite the
fact that we were unable to quite achieve our original
proposal, we learned various aspects of computer graphics
and still accomplished a lot with our project. From how to
use OpenCL to understanding the math behind the non-
Euclidean space in graphics, we overcame many obstacles.
Furthermore, we challenged ourselves in terms of quality
and spent a substantial amount of time learning our
respective areas.

Acknowledgements

All of the CS148 staffs who were kind to help us
throughout the project, and all the YouTube tutorials on
OpenCL.

References
[1] Ramesh, Varun
http://www.varunramesh.net/projects/raytracer
[2] Project first attempt: https://youtu.be/maCNCl4Y-a8
[3] Caroline Series, Hyperbolic Geometry,
http://homepages.warwick.ac.uk/~masbb/Papers/MA448.p
df Refer to introduction page vi for hyperboloid model
equation and Chapter 1.1.1 Cross-ratio and transitivity of
Aut(C) for Euclidean to hyperbolic distance transformation
on Page 4-8
[4] http://www.scratchpixel.com
[5] Demo of first GPU scene:
https://www.youtube.com/watch?v=LgSueFRbaCM
[6] Demo of tunnel illusion:
https://www.youtube.com/watch?v=heJZ3g1F94k
[7] SDL (v2) Docs: https://wiki.libsdl.org/FrontPage

Other Tutorials and Documents
[8] OpenCL Docs: https://kosobucki.pl/cl_doc/index.html
[9] SDL and Ray Tracing:
https://www.youtube.com/watch?v=W2QrXv2yZhE
[10] Object intersection equations:
http://www.realtimerendering.com/intersections.html
[11] World, View, and Projection Transformations:
http://www.codinglabs.net/article_world_view_projection_
matrix.aspx
[12] OpenCL tutorial:
http://simpleopencl.blogspot.com/2013/06/tutorial-simple-
start-with-opencl-and-c.html

