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Raster displays invoke clipping and scan-conversion algorithms each time an image is 
created or modified. Hence, these algorithms not only must create visually satisfactory 
images, but also must execute as rapidly as possible. As discussed in detail in later sections, 
scan-conversion algorithms use incremental methods to minimize the number of calcula­
tions (especially multiplies and divides) performed during each iteration; further, these 
calculations employ integer rather than floating-point arithmetic. As shown in Chapter 18, 
speed can be increased even further by using multiple parallel processors to scan convert 
simultaneously entire output primitives or pieces of them. 

3.2 SCAN CONVERTING LINES 

A scan-conversion algorithm for lines computes the coordinates of the pixels that lie on or 
near an ideal, infinitely thin straight line imposed on a 20 raster grid. In principle, we 
would like the sequence of pixels to lie as close to the ideal line as possible and to be as 
straight as possible. Consider a 1-pixel-thick approximation to an ideal line; what properties 
should it have? For lines with slopes between -I and I inclusive, exactly I pixel should be 
illuminated in each column; for lines with slopes outside this range, exactly I pixel should 
be illuminated in each row. All lines should be drawn with constant brightness, independent 
of length and orientation, and as rapidly as possible. There should also be provisions for 
drawing lines that are more than I pixel wide, centered on the ideal line, that are affected by 
line-style and pen-style attributes, and that create other effects needed for high-quality 
illustrations. For example, the shape of the endpoint regions should be under programmer 
control to allow beveled, rounded, and mitered corners. We would even like to be able to 
minimize the jaggies due to the discrete approximation of the ideal line by using 
antialiasing techniques exploiting the ability to set the intensity of individual pixels on 
n-bits-per-pixel displays. 

For now, we consider only "optimal," 1-pixel-thick lines that have exactly I bilevel 
pixel in each column (or row for steep lines). Later in the chapter, we consider thick 
primitives and deal with styles. 

To visualize the geometry, we recall that SRGP represents a pixel as a circular dot 
centered at that pixel's (x, y) location on the integer grid. This representation is a convenient 
approximation to the more or less circular cross-section of the CRT's electron beam, but the 
exact spacing between the beam spots on an actual display can vary greatly among systems. 
In some systems, adjacent spots overlap; in others, there may be space between adjacent 
vertical pixels; in most systems, the spacing is tighter in the horizontal than in the vertical 
direction. Another variation in coordinate-system representation arises in systems, such as 
the Macintosh, that treat pixels as being centered in the rectangular box between adjacent 
grid lines instead of on the grid lines themselves. In this scheme, rectangles are defined to 
be all pixels interior to the mathematical rectangle defined by two corner points. This 
definition allows zero-width (null) canvases: The rectangle from (x, y) to (x, y) contains no 
pixels, unlike the SRGP canvas, which has a single pixel at that point. For now, we continue 
to represent pixels as disjoint circles centered on a uniform grid, although we shall make 
some minor changes when we discuss antialiasing. 

Figure 3.4 shows a highly magnified view of a 1-pixel-thick line and of the ideal line 
that it approximates. The intensified pixels are shown as filled circles and the nonintensified 
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Fig. 3.4 A scan-converted line showing intensified pixels as black circles. 

pixels are shown as unfilled circles. On an actual screen, the diameter of the roughly 
circular pixel is larger than the interpixel spacing, so our symbolic representation 
exaggerates the discreteness of the pixels. 

Since SRGP primitives are defined on an integer grid, the endpoints of a line have 
integer coordinates. In fact, if we first clip the line to the clip rectangle, a line intersecting a 
clip edge may actually have an endpoint with a non integer coordinate value. The same is 
true when we use a floating-point raster graphics package. (We discuss these noninteger 
intersections in Section 3. 2. 3.) Assume that our line has slope lml < I; lines at other slopes 
can be handled by suitable changes in the development that follows. Also, the most 
common lines-those that are horizontal, are vertical, or have a slope of + l--ean be 
handled as trivial special cases because these lines pass through only pixel centers (see 
Exercise 3. I ) . 

3.2.1 The Basic Incremental Algorithm 

The simplest strategy for scan conversion of lines is to compute the slope m as dyl ax, to 
increment x by I starting with the leftmost point, to calculate Yi = mxi + B for each xi, and 
to intensify the pixel at (xi, Round(yi)), where Round(yi) = Floor(0.5 + Yi). This 
computation selects the closest pixel-that is, the pixel whose distance to the true line is 
smallest. 1 This brute-force strategy is inefficient, however, because each iteration requires a 
floating-point (or binary fraction) multiply, addition, and invocation of Floor. We can 
eliminate the multiplication by noting that 

Yi+l = mxi+l + B = m(xi + ax) + B = Yi + max, 

and, if ax= I, then Yi+l = Yi + m. 
Thus, a unit change in x changes y by m, which is the slope of the line. For all points 

(xi, Yi) on the line, we know that, if xi+ 1 =xi + I, then Yi+ 1 = Yi + m; that is, the values of x 
andy are defined in terms of their previous values (see Fig. 3.5). This is what defines an 

1In Chapter 19, we discuss various measures of closeness for lines and general curves (also called 
error measures). 
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(x; , Round (Y; )) 

Fig. 3.5 Incremental calculation of (x1, y1). 

incremental algorithm: At each step, we make incremental calculations based on the 
preceding step. 

We initialize the incremental calculation with (x0, y0), the integer coordinates of an 
endpoint. Note that this incremental technique avoids the need to deal with they intercept, 
B, explicitly. If lml > 1, a step in x creates a step in y that is greater than 1. Thus, we must 
reverse the roles of x andy by assigning a unit step toy and incrementing x by dx = ll.ylm = 
1/m. Line, the procedure in Fig. 3.6, implements this technique. The start point must be 
the left endpoint. Also, it is limited to the case -1 < m < 1, but other slopes may be 
accommodated by symmetry. The checking for the special cases of horizontal, vertical, or 
diagonal lines is omitted. 

WritePixel, used by Line, is a low-level procedure provided by the device-level 
software; it places a value into a canvas for a pixel whose coordinates are given as the first 
two arguments.2 We assume here that we scan convert only in replace mode; for SRGP's 
other write modes, we must use a low-level ReadPixel procedure to read the pixel at the 
destination location, logically combine that pixel with the source pixel, and then write the 
result into the destination pixel with WritePixel. 

This algorithm is often referred to as a digital differential analyzer ( DDA) algorithm. 
The DDA is a mechanical device that solves differential equations by numerical methods: It 
traces out successive (x, y) values by simultaneously incrementing x and y by small steps 
proportional to the first derivative of x and y. In our case, the x increment is 1 , and the y 
increment is dyldx = m. Since real variables have limited precision, summing an inexact m 
repetitively introduces cumulative error buildup and eventually a drift away from a true 
Round(yi); for most (short) lines, this will not present a problem. 

3.2.2 Midpoint Line Algorithm 

The drawbacks of procedure Line are that rounding y to an integer takes time, and that the 
variables y and m must be real or fractional binary because the slope is a fraction. 
Bresenham developed a classic algorithm [BRES65] that is attractive because it uses only 

2J:f such a low-level procedure is not available, the SRGP _pointCoord procedure may be used, as 
described in the SRGP reference manual. 
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void Line ( 

{ 

int xO, int yO, 
intxJ, intyJ, 
int value) 

intx; 

double dy = y 1 - yO; 
double dx = xl - xO; 
double m = dy / dx; 
double y = yO; 
for (x = xO; x <= xl; x++) { 

WritePixel (x, Round (y), value); 
y+=m; 

} 
} I* Line *I 

Scan Converting Lines 

I* Assumes-! ~m~ l,xO<xl *I 
I* Left endpoint *I 
I* Right endpoint *I 
I* Value to place in line's pixels *I 

I* x runs from xO to xl in unit increments. *I 

I* Set pixel to value *I 
I* Step y by slope m *I 

Fig. 3.6 The incremental line scan-conversion algorithm. 

75 

integer arithmetic, thus avoiding the Round function, and allows the calculation for 
(xi+ 1 , Yi + 1) to be performed incrementally-that is, by using the calculation already done at 
(xi, Yi). A floating-point version of this algorithm can be applied to lines with arbitrary 
real-valued endpoint coordinates. Furthermore, Bresenham's incremental technique may 
be applied to the integer computation of circles as well, although it does not generalize 
easily to arbitrary conics. We therefore use a slightly different formulation, the midpoint 
technique, first published by Pitteway [PITT67] and adapted by VanAken [VANA84] and 
other researchers. For lines and integer circles, the midpoint formulation, as Van Aken 
shows [VANA85], reduces to the Bresenham formulation and therefore generates the same 
pixels. Bresenham showed that his line and integer circle algorithms provide the best-fit 
approximations to true lines and circles by minimizing the error (distance) to the true 
primitive [BRES 77]. Kappel discusses the effects of various error criteria in [KAPP85]. 

We assume that the line's slope is between 0 and I. Other slopes can be handled by 
suitable reflections about the principal axes. We call the lower-left endpoint (x0 , y0) and the 
upper-right endpoint (x1, y1). 

Consider the line in Fig. 3. 7, where the previously selected pixel appears as a black 
circle and the two pixels from which to choose at the next stage are shown as unfilled 
circles. Assume that we have just selected the pixel P at (xp, yp) and now must choose 
between the pixel one increment to the right (called the east pixel, E) or the pixel one 
increment to the right and one increment up (called the northeast pixel, NE). Let Q be the 
intersection point of the line being scan-converted with the grid line x = Xp + 1 . In 
Bresenham's formulation, the difference between the vertical distances from E and NE to Q 
is computed, and the sign of the difference is used to select the pixel whose distance from Q 
is smaller as the best approximation to the line. In the midpoint formulation, we observe on 
which side of the line the midpoint M lies. It is easy to see that, if the midpoint lies above 
the line, pixel E is closer to the line; if the midpoint lies below the line, pixel NE is closer to 
the line. The line may pass between E and NE, or both pixels may lie on one side, but in any 
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Previous Choices for Choices for 
pixel current pixel next pixel 

Fig. 3. 7 The pixel grid for the midpoint line algorithm, showing the midpoint M, and the 
E and NE pixels to choose between. 

case, the midpoint test chooses the closest pixel. Also, the error-that is, the vertical 
distance between the chosen pixel and the actual line-is always < 1/2. 

The algorithm chooses NE as the next pixel for the line shown in Fig. 3. 7. Now all we 
need is a way to calculate on which side of the line the midpoint lies. Let's represent the line 
by an implicit function3 with coefficients a, b, and c: F(x, y) = ax+ by + c = 0. (The b 
coefficient of y is unrelated to they intercept Bin the slope-intercept form.) If dy = y1 - y0, 

and dx = x1 - x0, the slope-intercept form can be written as 

therefore, 

Y =~X+ B. 
dx ' 

F(x, y) = dy · x - dx · y + B · dx = 0. 

Here a = dy, b = -dx, and c = B · dx in the implicit form. 4 

It can easily be verified that F(x, y) is zero on the line, positive for points below the 
line, and negative for points above the line. To apply the midpoint criterion, we need only to 
compute F(M) = F(xp + 1, YP + !) and to test its sign. Because our decision is based on 
the value of the function at (xp + 1, yp +!),we define a decision variable d = F (xp + 1, 
YP +t). By definition, d = a(xp + 1) + b(yp +!)+c. If d > 0, we choose pixelNE; if d < 0, 
we choose E; and if d = 0, we can choose either, so we pick E. 

Next, we ask what happens to the location of M and therefore to the value of d for the 
next grid line; both depend, of course, on whether we chose E orNE. If E is chosen, M is 

3This functional form extends nicely to the implicit formulation of both circles and ellipses. 
4It is important for the proper functioning of the midpoint algorithm to choose a to be positive; we 
meet this criterion if dy is positive, since y1 > y0• 
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incremented by one step in the x direction. Then, 

dnew = F(xp + 2, YP + i) = a(xp + 2) + b(yp + i) + c, 

but 

dold = a(xp + I) + b(yp + i) + c. 

Subtracting dold from dnew to get the incremental difference, we write dnew = dold + a. 
We call the increment to add after E is chosen dE; dE= a= dy. In other words, we can 

derive the value of the decision variable at the next step incrementally from the value at the 
current step without having to compute F(M) directly, by merely adding dE. 

If NE is chosen, M is incremented by one step each in both the x andy directions. 
Then, 

dnew = F(xp + 2, YP +f) = a(xp + 2) + b(yp +f) + c. 

Subtracting dold from dnew to get the incremental difference, we write 

dnew = dold + a + b. 

We call the increment to add to d after NE is chosen dNE; dNE = a + b = dy - dx. 
Let's summarize the incremental midpoint technique. At each step, the algorithm 

chooses between 2 pixels based on the sign of the decision variable calculated in the 
previous iteration; then, it updates the decision variable by adding either dE or dNE to the 
old value, depending on the choice of pixel. 

Since the first pixel is simply the first endpoint (x0 , y0), we can directly calculate the 
initial value of d for choosing between E and NE. The first midpoint is at (x0 + I, y0 + i), 
and 

F(x0 + I , Yo + i) = a(x0 + I) + b(y0 + i) + c 

= ax0 + by0 + c + a + b/2 

= F(x0 , y0) + a + b/2. 

But (x0 , y0) is a point on the line and F(x0 , y0) is therefore 0; hence, dstart is just a + b/2 = 
dy- dx/2. Using dstart, we choose the second pixel, and so on. To eliminate the fraction in 
dstart' we redefine our original F by multiplying it by 2; F(x, y) = 2(ax + by + c). This 
multiplies each constant and the decision variable by 2, but does not affect the sign of the 
decision variable, which is all that matters for the midpoint test. 

The arithmetic needed to evaluate dnew for any step is simple addition. No time­
consuming multiplication is involved. Further, the inner loop is quite simple, as seen in the 
midpoint algorithm of Fig. 3.8. The first statement in the loop, the test of d, determines the 
choice of pixel, but we actually increment x and y to that pixel location after updating the 
decision variable (for compatibility with the circle and ellipse algorithms). Note that this 
version of the algorithm works for only those lines with slope between 0 and I; generalizing 
the algorithm is left as Exercise 3.2. In [SPR082], Sproull gives an elegan't derivation of 
Bresenham's formulation of this algorithm as a series of program transformations from the 
original brute-force algorithm. No equivalent of that derivation for circles or ellipses has yet 
appeared, but the midpoint technique does generalize, as we shall see. 
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void MidpointLine (int xO, lnt yO, int xl, int yl, int value) 
{ 

lnt dx = xl - xO; 
lnt dy = y 1 - yO; 
int d = 2 * dy - dx; 
int incrE = 2 * dy; 
int incrNE = 2 * (dy- dx); 
intx = xO; 
inty =yO; 
WritePixel (x, y, value); 

while (x < xl) { 
if (d <= 0) { 

d += incrE; 
x++; 

} else { 

} 

d += incrNE; 
x++; 
y++; 

WritePixel (x, y, value); 
} /* while *' 

} /* MidpointLine *' 

/* Initial value of d *' 
I* Increment used for move toE *' 
I* Increment used for move toNE *' 
I* The start pixel *' 
I* Choose E *' 
I* Choose NE *' 

I* The selected pixel closest to the line *' 

Fig. 3.8 The midpoint line scan-conversion algorithm. 

For a line from point (5, 8) to point (9, 11), the successive values of dare 2, 0, 6, and 
4, resulting in the selection of NE, E, NE, and then NE, respectively, as shown in Fig. 3.9. 
The line appears abnormally jagged because of the enlarged scale of the drawing and the 
artificially large interpixel spacing used to make the geometry of the algorithm clear. For 
the same reason, the drawings in the following sections also make the primitives appear 
blockier than they look on an actual screen. 

3.2.3 Additional Issues 

Endpoint order. Among the complications to consider is that we must ensure that a line 
from P0 to P1 contains the same set of pixels as the line from P1 to P0, so that the appearance 
of the line is independent of the order of specification of the endpoints. The only place 
where the choice of pixel is dependent on the direction of the line is where the line passes 
exactly through the midpoint and the decision variable is zero; going left to right, we chose 
to pick E for this case. By symmetry, while going from right to left, we would also expect to 
choose W ford = 0, but that would choose a pixel one unit up in y relative to the one chosen 
for the left-to-right scan. We therefore need to choose SW when d = 0 for right-to-left 
scanning. Similar adjustments need to be made for lines at other slopes. 
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Fig. 3.9 The midpoint line from point (5, 8) to point (9, 11 ). 

The alternative solution of switching a given line's endpoints as needed so that scan 
conversion always proceeds in the same direction does not work when we use line styles. 
The line style always "anchors" the specified write mask at the start point, which would be 
the bottom-left point, independent of line direction. That does not necessarily produce the 
desired visual effect. In particular, for a dot-dash line pattern of, say, III I 00, we would 
like to have the pattern start at whichever start point is specified, not automatically at the 
bottom-left point. Also, if the algorithm always put endpoints in a canonical order, the pat­
tern might go left to right for one segment and right to left for the adjoining segment, as a func­
tion of the second line's slope; this would create an unexpected discontinuity at the shared 
vertex, where the pattern should follow seamlessly from one line segment to the next. 

Starting at the edge of a clip rectangle. Another issue is that we must modify our 
algorithm to accept a line that has been analytically clipped by one of the algorithms in 
Section 3 .12. Fig. 3 .I O(a) shows a line being clipped at the left edge, x = xrnin' of the clip 
rectangle. The intersection point of the line with the edge has an integer x coordinate but a 
real y coordinate. The pixel at the left edge, (xrnin' Round(nurnin +B)), is the same pixel that 
would be drawn at this x value for the unclipped line by the incremental algorithm. 5 Given 
this initial pixel value, we must next initialize the decision variable at the midpoint between 
theE and NE positions in the next column over. It is important to realize that this strategy 
produces the correct sequence of pixels, while clipping the line at the xrnin boundary and 
then scan converting the clipped line from (xrnin' Round(nurnin + B)) to (x1, y1) using the 
integer midpoint line algorithm would not-that clipped line has a different slope! 

The situation is more complicated if the line intersects a horizontal rather than a 
vertical edge, as shown in Fig. 3.10 (b). For the type of shallow line shown, there will be 
multiple pixels lying on the scan line y = Yrrun that correspond to the bottom edge of the clip 
region. We want to count each of these as inside the clip region, but simply computing the 
analytical intersection of the line with they = Yrrun scan line and then rounding the x value of 
the intersection point would produce pixel A, not the leftmost point of the span of pixels 
shown, pixel B. From the figure, it is clear that the leftmost pixel of the span, B, is the one 

5When mxmin + B lies exactly halfway between horizontal grid lines, we actually must round down. 
This is a consequence of choosing pixel E when d = 0. 
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X= Xmin 

1 

Y=Ymin-2~-

X= Xmin 

Clip rectangle ....._ _ __.. _________ Y = Ymin 

(a) 

(b) 

Y= Ymin 

Fig. 3.10 Starting the line at a clip boundary. (a) Intersection with a vertical edge. 
(b) Intersection with a horizontal edge (gray pixels are on the line but are outside the 
clip rectangle). 

that lies just above and to the right of the place on the grid where the line first crosses above 
the midpoint y = Ymin - t. Therefore, we simply find the intersection of the line with the 
horizontal line y = Ymin - !, and round up the x value; the first pixel, B, is then the one at 
(Round(xyrnin-~, Ymin). 

Finally, the incremental midpoint algorithm works even if endpoints are specified in a 
floating-point raster graphics package; the only difference is that the increments are now 
reals, and the arithmetic is done with reals. 

Varying the intensity of a line as a function of slope. Consider the two scan converted 
lines in Fig. 3.11. Line B, the diagonal line, has a slope of 1 and hence is V2 times as long 
as A, the horizontal line. Yet the same number of pixels ( 10) is drawn to represent each line. 
If the intensity of each pixel is I, then the intensity per unit length of line A is I, whereas for 
line B it is only 11V2; this discrepancy is easily detected by the viewer. On a bilevel display, 
there is no cure for this problem, but on ann-bits-per-pixel system we can compensate by 
setting the intensity to be a function of the line's slope. Antialiasing, discussed in Section 
3.17, achieves an even better result by treating the line as a thin rectangle and computing 
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Line B 

Line A 

Fig. 3.11 Varying intensity of raster lines as a function of slope. 

appropriate intensities for the multiple pixels in each column that lie in or near the 
rectangle. 

Treating the line as a rectangle is also a way to create thick lines. In Section 3. 9, we 
show how to modify the basic scan-conversion algorithms to deal with thick primitives and 
with primitives whose appearance is affected by line-style and pen-style attributes. Chapter 
19 treats several other enhancements of the fundamental algorithms, such as handling 
endpoint shapes and creating joins between lines with multiple-pixel width. 

Outline primitives composed of lines. Knowing how to scan convert lines, how do we 
scan convert primitives made from lines? Polylines can be scan-converted one line segment 
at a time. Scan converting rectangles and polygons as area-defining primitives could be 
done a line segment at a time but that would result in some pixels being drawn that lie 
outside a primitive's area-see Sections 3. 5 and 3. 6 for special algorithms to handle this 
problem. Care must be taken to draw shared vertices ofpolylines only once, since drawing a 
vertex twice causes it to change color or to be set to background when writing in xor mode 
to a screen, or to be written at double intensity on a film recorder. In fact, other pixels may 
be shared by two line segments that lie close together or cross as well. See Section 19.7 and 
Exercise 3. 8 for a discussion of this, and of the difference between a polyline and a 
sequence of connected line segments. 

3.3 SCAN CONVERTING CIRCLES 

Although SRGP does not offer a circle primitive, the implementation will benefit from 
treating the circular ellipse arc as a special case because of its eight-fold symmetry, both for 
clipping and for scan conversion. The equation of a circle centered at the origin is x2 + y2 = R2. 
Circles not centered at the origin may be translated to the origin by integer amounts and then 
scan converted, with pixels written with the appropriate offset. There are several easy but 
inefficient ways to scan convert a circle. Solving for yin the implicit circle equation, we get 
the explicit y = f(x) as 

y = +v'R2 - x2. 

To draw a quarter circle (the other quarters are drawn by symmetry), we can increment x 

from 0 to R in unit steps, solving for +y at each step. This approach works, but it is 
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inefficient because of the multiply and square-root operations. Furthermore, the circle will 
have large gaps for values of x close toR, because the slope of the circle becomes infinite 
there (see Fig. 3.12). A similarly inefficient method, which does, however, avoid the large 
gaps, is to plot (R cosO, R sinO) by stepping 0 from 0° to 90°. 

3.3.1 Eight-Way Symmetry 

We can improve the drawing process of the previous section by taking greater advantage of 
the symmetry in a circle. Consider first a circle centered at the origin. If the point (x, y) is 
on the circle, then we can trivially compute seven other points on the circle, as shown in 
Fig. 3.13. Therefore, we need to compute only one 45° segment to determine the circle 
completely. For a circle centered at the origin, the eight symmetrical points can be displayed 
with procedure CirclePoints (the procedure is easily generalized to the case of circles with 
arbitrary origins): 

void CirclePoints ( int x, tnt y, int value) 

{ 
WritePixel (x, y, value); 
WritePixel (y, x, value); 
WritePixel (y, - x, value); 
WritePixel (x, -y, value); 
WritePixel (-x, - y, value); 
WritePixel (-y, - x, value); 
WritePixel (-y, x, value); 
WritePixel ( -x, y, value); } '* CirclePoints *' 

We do not want to call CirclePoints when x = y, because each of four pixels would be 
set twice; the code is easily modified to handle that boundary condition. 

/ 

(17, 0) 

Fig. 3.12 A quarter circle generated with unit steps in x, and with y calculated and then 
rounded. Unique values of y for each x produce gaps. 
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(-y, x) (y, x) 

(-y, -x) (y, -x) 

Fig. 3.13 Eight symmetrical points on a circle. 

3.3.2 Midpoint Circle Algorithm 

Bresenham [BRES77] developed an incremental circle generator that is more efficient than 
the methods we have discussed. Conceived for use with pen plotters, the algorithm 
generates all points on a circle centered at the origin by incrementing all the way around the 
circle. We derive a similar algorithm, again using the midpoint criterion, which, for the case 
of integer center point and radius, generates the same, optimal set of pixels. Furthermore, 
the resulting code is essentially the same as that specified in patent 4,371 ,933 [BRES83]. 

We consider only 45° of a circle, the second octant from x = 0 to x = y = Rtv'2, and 
use the CirclePoints procedure to display points on the entire circle. As with the midpoint 
line algorithm, the strategy is to select which of 2 pixels is closer to the circle by evaluating 
a function at the midpoint between the 2 pixels. In the second octant, if pixel Pat (xp, yp) 

has been previously chosen as closest to the circle, the choice of the next pixel is between 
pixel E and SE (see Fig. 3.14). 

Previous Choices for Choices for 
pixel current pixel next pixel 

Fig. 3.14 The pixel grid for the midpoint circle algorithm showing M and the pixels E 
and SE to choose between. 
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Let F(x, y) = r + y - R2; this function is 0 on the circle, positive outside the circle, 
and negative inside the circle. It can be shown that if the midpoint between the pixels E and 
SE is outside the circle, then pixel SE is closer to the circle. On the other hand, if the 
midpoint is inside the circle, pixel E is closer to the circle. 

As for lines, we choose on the basis of the decision variable d, which is the value of the 
function at the midpoint, 

dold = F(xp + 1, YP- i) = (Xp + 1)2 + (yp- i)2
- R2

• 

If d01d < 0, E is chosen, and the next midpoint will be one increment over in x. Then, 

dnew = F(Xp + 2, YP - i) = (Xp + 2)2 + (yp - i)2 
- R2

, 

and dnew = dold + (2xp + 3); therefore, the increment dE = 2xp + 3. 
If d01d > 0, SE is chosen,6 and the next midpoint will be one increment over in x and one 

increment down in y. Then 

dnew = F(Xp + 2, YP -f) = (Xp + 2)2 + (yp - f)2 
- R2

• 

Since dnew = dold + (2xp - 2yp + 5), the increment dsE = 2xp - 2yp + 5. 
Recall that, in the linear case, dE and dNE were constants; in the quadratic case, 

however, dE and dsE vary at each step and are functions of the particular values of Xp and yp 
at the pixel chosen in the previous iteration. Because these functions are expressed in terms 
of (xp, yp), we call P the point of evaluation. The d functions can be evaluated directly at 
each step by plugging in the values of x and y for the pixel chosen in the previous iteration. 
This direct evaluation is not expensive computationally, since the functions are only linear. 

In summary, we do the same two steps at each iteration of the algorithm as we did for 
the line: ( 1) choose the pixel based on the sign of the variable d computed during the 
previous iteration, and (2) update the decision variable d with the a that corresponds to the 
choice of pixel. The only difference from the line algorithm is that, in updating d, we 
evaluate a linear function of the point of evaluation. 

All that remains now is to compute the initial condition. By limiting the algorithm to 
integer radii in the second octant, we know that the starting pixel lies on the circle at (0, R). 

The next midpoint lies at (1, R- i), therefore, and F(1, R- i) = 1 + (R2 - R + i) - R2 = 
t- R. Now we can implement the algorithm directly, as in Fig. 3.15. Notice how similar in 
structure this algorithm is to the line algorithm. 

The problem with this version is that we are forced to do real arithmetic because of the 
fractional initialization of d. Although the procedure can be easily modified to handle 
circles that are not located on integer centers or do not have integer radii, we would like a 
more efficient, purely integer version. We thus do a simple program transformation to 
eliminate fractions. 

First, we define a new decision variable, h, by h = d- t, and we substitute h + ifor d 
in the code. Now, the intialization ish = 1 - R, and the comparison d < 0 becomes h < - t. 

6Choosing SE when d = 0 differs from our choice in the line algorithm and is arbitrary. The reader 
may wish to simulate the algorithm by hand to see that, for R = 17, 1 pixel is changed by this 
choice. 
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void MidpointCircle ( int radius, int value) 
I* Assumes center of circle is at origin *' 
{ 

intx = 0; 
int y = radius; 
doubled= 5.0 / 4.0 - radius; 
CirclePoints (x, y, value); 

while (y > x) { 
if (d < 0) '* Select E *' 

d += 2.0 * X + 3.0; 

else { '* Select SE *' 
d += 2.0 * (x- y) + 5.0; 
y--; 

} 
x++; 
CirclePoints (x, y, value); 

} '* while *' } '* MidpointCircle *' 
Fig. 3.15 The midpoint circle scan-conversion algorithm. 
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However, since h starts out with an integer value and is incremented by integer values (dE 
and dsE), we can change the comparison to just h < 0. We now have an integer algorithm in 
terms of h; for consistency with the line algorithm, we will substituted for h throughout. 
The final, fully integer algorithm is shown in Fig. 3. 16. 

Figure 3. 17 shows the second octant of a circle of radius I 7 generated with the 
algorithm, and the first octant generated by symmetry (compare the results to Fig. 3.12). 

Second-order differences. We can improve the performance of the midpoint circle 
algorithm by using the incremental computation technique even more extensively. We noted 
that the Ll functions are linear equations, and we computed them directly. Any polynomial 
can be computed incrementally, however, as we did with the decision variables for both the 
line and the circle. In effect, we are calculating first- and second-order partial differences, a 
useful technique that we encounter again in Chapters II and 19. The strategy is to evaluate 
the function directly at two adjacent points, to calculate the difference (which, for 
polynomials, is always a polynomial of lower degree), and to apply that difference in each 
iteration. 

If we choose E in the current iteration, the point of evaluation moves from (xp, yp) to 
(xp + I, yp). As we saw, the first-order difference is dEold at (xp, yp) = 2xp -f 3. Therefore, 

dEnew at (Xp + I' yp) = 2(xp + I) + 3, 

and the second-order difference is dEnew - dEold = 2. 
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void MidpointCircle (lot radius, lnt value) '* Assumes center of circle is at origin. Integer arithmetic only *' 
{ 

intx = 0; 
int y =radius; 
int d = 1 - radius; 
CirclePoints (x, y, value); 

while (y > x) { 

if (d < 0) '* Select E *' 
d += 2 *X+ 3; 

else { '* Select SE *' 
d += 2 * (x- y) + 5; 
y--; 

} 
x++; 
CirclePoints (x, y, value); 

} '* while *' } '* MidpointCircle *' 
Fig. 3.16 The integer midpoint circle scan-conversion algorithm. 

Similarly, dsEold at (xp, yp) = 2xp - 2yp + 5. Therefore, 

dsEnew at (Xp + I' yp) = 2(xp + I) - 2yp + 5, 

and the second-order difference is dsEnew - dsEold = 2. 
If we choose SE in the current iteration, the point of evaluation moves from (xp, yp) to 

(xp + I , YP - I). Therefore, 

dE new at (Xp + I , YP - I) = 2(xp + I) + 3, 

and the second-order difference is dEnew - dEoJd = 2. Also, 

dsEnew at (xp + 1, YP- 1) = 2(xp + 1)- 2(yp- I)+ 5, 

and the second-order difference is dsEnew - dsEold = 4. 
The revised algorithm then consists of the following steps: (I) choose the pixel based 

on the sign of the variable d computed during the previous iteration; (2) update the decision 
variable d with either dE or Ll8E, using the value of the corresponding Ll computed during 
the previous iteration; (3) update the Lls to take into account the move to the new pixel, 
using the constant differences computed previously; and (4) do the move. dE and dsE are 
initialized using the start pixel (0, R). The revised procedure using this technique is shown 
in Fig. 3.18. 
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./ 
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Fig. 3.17 Second octant of circle generated with midpoint algorithm, and first octant 
generated by symmetry. 

void MidpointCircle ( int radius, int value) '* This procedure uses second-order partial differences to compute increments *' '* in the decision variable. Assumes center of circle is at origin *' 
{ 

intx = 0; 
int y = radius; 
int d = 1 - radius; 
int delta£= 3; 
int deltaS£= -2 *radius+ 5; 
CirclePoints (x, y, value); 

while (y > x) { 
if (d < 0) { 

d +=delta£; 
delta£+= 2; 
deltaS£ += 2; 

} else { 

} 

d += deltaS£; 
delta£+= 2; 
deltaS£ += 4; 
y--; 

x++; 

I* Select E *' 

'* Select SE *' 

CirclePoints ( x, y, value); 

} '* while *' } '* MidpointCircle *' 
Fig. 3.18 Midpoint circle scan-conversion algorithm using second-order differences. 




